ABSTRACT
Objective Develop and validate models that predict mortality of SARS-CoV-2 infected patients admitted to the hospital.
Design Retrospective cohort study
Setting A multicenter cohort across ten Dutch hospitals including patients from February 27 to June 8 2020.
Participants SARS-CoV-2 positive patients (age ≥ 18) admitted to the hospital.
Main Outcome Measures 21-day mortality evaluated by the area under the receiver operatory curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value. The predictive value of age was explored by comparison with age-based rules used in practice and by excluding age from analysis.
Results 2273 patients were included, of whom 516 had died or discharged to palliative care within 21 days after admission. Five feature sets, including premorbid, clinical presentation and laboratory & radiology values, were derived from 80 features. Additionally, an ANOVA-based data-driven feature selection selected the ten features with the highest F-values: age, number of home medications, urea nitrogen, lactate dehydrogenase, albumin, oxygen saturation (%), oxygen saturation is measured on room air, oxygen saturation is measured on oxygen therapy, blood gas pH and history of chronic cardiac disease. A linear logistic regression (LR) and non-linear tree-based gradient boosting (XGB) algorithm fitted the data with an AUC of 0.81 (95% confidence interval 0.77 to 0.85) and 0.82 (0.79 to 0.85), respectively, using the ten selected features. Both models outperformed age-based decision rules used in practice (AUC of 0.69, 0.65 to 0.74 for age > 70). Furthermore, performance remained stable when excluding age as predictor (AUC of 0.78, 0.75 to 0.81)
Conclusion Both models showed excellent performance and had better test characteristics than age-based decision rules, using ten admission features readily available in Dutch hospitals. The models hold promise to aid decision making during a hospital bed shortage.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding to declare
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Amsterdam University Medical Centers (Amsterdam UMC; 20.131) Maastricht University Medical Center (MUMC; 2020-1323)
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
DATA SHARING Not all patients provided active informed consent, and therefore data cannot be shared. The code used in this study is made publicly available and can be found at