Abstract
Objectives The early stages of the COVID-19 pandemic illustrated that SARS-CoV-2, the virus that causes the disease, has the potential to spread exponentially. Therefore, as long as a substantial proportion of the population remains susceptible to infection, the potential for new epidemic waves persists even in settings with low numbers of active COVID-19 infections, unless sufficient countermeasures are in place. We aim to quantify vulnerability to resurgences in COVID-19 transmission under variations in the levels of testing, tracing, and mask usage.
Setting The Australian state of New South Wales, a setting with prolonged low transmission, high mobility, non-universal mask usage, and a well-functioning test-and-trace system.
Participants None (simulation study)
Results We find that the relative impact of masks is greatest when testing and tracing rates are lower (and vice versa). Scenarios with very high testing rates (90% of people with symptoms, plus 90% of people with a known history of contact with a confirmed case) were estimated to lead to a robustly controlled epidemic, with a median of ∼180 infections in total over October 1 – December 31 under high mask uptake scenarios, or 260–1,200 without masks, depending on the efficacy of community contact tracing. However, across comparable levels of mask uptake and contact tracing, the number of infections over this period were projected to be 2-3 times higher if the testing rate was 80% instead of 90%, 8-12 times higher if the testing rate was 65%, or 30-50 times higher with a 50% testing rate. In reality, NSW diagnosed 254 locally-acquired cases over this period, an outcome that had a low probability in the model (4-7%) under the best-case scenarios of extremely high testing (90%), near-perfect community contact tracing (75-100%), and high mask usage (50-75%), but a far higher probability if any of these were at lower levels.
Conclusions Our work suggests that testing, tracing and masks can all be effective means of controlling transmission. A multifaceted strategy that combines all three, alongside continued hygiene and distancing protocols, is likely to be the most robust means of controlling transmission of SARS-CoV-2.
Strengths and limitations of this study
A key methodological strength of this study is the level of detail in the model that we use, which allows us to capture many of the finer details of the extent to which controlling COVID-19 transmission relies on the balance between testing, contact tracing, and mask usage.
Another key strength is that our model is stochastic, so we are able to quantify the probability of different epidemiological outcomes under different policy settings.
A key limitation is the shortage of publicly-available data on the efficacy of contact tracing programs, including data on how many people were contacted for each confirmed index case of COVID-19.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Australian NHMRC
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Revised manuscript in response to reviewer comments, and added a comparison between what the model projected and what occurred over October-December 2020.
Data Availability
All code and data analysed during this study are available in https://github.com/optimamodel/covid_nsw