Abstract
Human cancers are biologically and morphologically heterogeneous. A variety of clonal populations emerge within these neoplasms and their interaction leads to complex spatio-temporal dynamics during tumor growth. We studied the reshaping of metabolic activity in human cancers by means of continuous and discrete mathematical models, and matched the results to positron emission tomography (PET) imaging data. Our models revealed that the location of increasingly active proliferative cellular spots progressively drifted from the center of the tumor to the periphery, as a result of the competition between gradually more aggressive phenotypes. This computational finding led to the development of a metric, the NPAC, based on the distance from the location of peak activity (proliferation) to the tumor centroid. The NPAC metric can be computed for human patients using 18F-FDG PET/CT images where the voxel of maximum uptake (SUVmax) is taken as the point of peak activity. Two datasets of 18F-FDG PET/CT images were collected, one from 61 breast cancer patients and another from 161 non-small-cell lung cancer patients. In both cohorts, survival analyses were carried out for the NPAC and for other classical PET/CT-based biomarkers, finding that the former had a high prognostic value, outperforming the latter. In summary, our work offers new insights into the evolutionary mechanisms behind tumor progression and provides a PET/CT-based biomarker with clinical applicability.
Significance Statement Through the use of different in silico modeling approaches capturing tumor heterogeneity, we predicted that areas of high metabolic activity would shift towards the periphery as tumors become more malignant. To confirm the prediction and provide clinical value for the finding, we took 18F-FDG PET images of breast cancers and non-small-cell lung cancers, where we measured the distance from the point of maximum activity to the tumor centroid, and normalized it by a surrogate of the volume. We show that this metric has a high prognostic value for both malignancies and outperforms other classical PET-based metabolic biomarkers used in oncology.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research has been supported by the James S. McDonnell Foundation 21st Century Science Initiative in Mathematical and Complex Systems Approaches for Brain Cancer (collaborative awards 220020560 and 220020450), Ministerio de Economía y Competitividad/FEDER, Spain (grant no. MTM2015-71200-R) AND Junta de Comunidades de Castilla-La Mancha (grant no. SBPLY/17/180501/000154).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Patients were participants of a multicentre prospective study approved by the institutional review board (IRB) of Hospital General Universitario de Ciudad Real, Spain. Written informed consent was obtained from all of the patients.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
G.F.C. and V.M.P.-G. proposed the hypothesis and designed the research; J.P.-B., V.M.P.-G., A.F.H.M., G.A.J.L. and A.M.G.-V. collected and processed the data and analyzed the medical implications; J.J.-S., J.J.B., G.F.C, D.M.-G. and A.M. performed the research and analyzed the data; J.J.-S., J.J.B., G.F.C. and V.M.P-G. drafted the paper. All authors read and approved the manuscript.
The authors declare no conflict of interest.
↵2 V.M.P.-G. and G.F.C. were both co-senior authors of this work.
Data Availability
All data is included in the manuscript and supporting information.