Abstract
Black, Hispanic, and Indigenous persons in the United States have an increased risk of SARS-CoV-2 infection and death from COVID-19, due to persistent social inequities. The magnitude of the disparity is unclear, however, because race/ethnicity information is often missing in surveillance data. In this study, we quantified the burden of SARS-CoV-2 infection, hospitalization, and case fatality rates in an urban county by racial/ethnic group using combined race/ethnicity imputation and quantitative bias-adjustment for misclassification. After bias-adjustment, the magnitude of the absolute racial/ethnic disparity, measured as the difference in infection rates between classified Black and Hispanic persons compared to classified White persons, increased 1.3-fold and 1.6-fold respectively. These results highlight that complete case analyses may underestimate absolute disparities in infection rates. Collecting race/ethnicity information at time of testing is optimal. However, when data are missing, combined imputation and bias-adjustment improves estimates of the racial/ethnic disparities in the COVID-19 burden.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported in part by the US National Institutes of Health F31CA239566 (PI L. J. Collin), R01LM013049 (PI T. L. Lash), and K24AI114444 (PI N. R. Gandhi). It was also supported by a grant from the Robert W. Woodruff foundation (PI A. Chamberlain). K. Labgold is supported in part by the Center for Reproductive Health Research in the Southeast (RISE) Doctoral Fellowship and an ARCS Foundation Award.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Georgia Department of Health determined this activity to be consistent with public health surveillance, so does not require informed consent or IRB approval.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Co-First Authors
Conflicts of Interest: The authors have no conflicts of interest to declare.
Financial Support: This work was supported in part by the US National Institutes of Health F31CA239566 (PI L. J. Collin), R01LM013049 (PI T. L. Lash), and K24AI114444 (PI N. R. Gandhi). It was also supported by a grant from the Robert W. Woodruff foundation (PI A. Chamberlain). K. Labgold is supported in part by the Center for Reproductive Health Research in the Southeast (RISE) Doctoral Fellowship and an ARCS Foundation Award.
Data Access: Due to patient confidentiality, data are only available upon request from the Fulton County Board of Health and with IRB approval from the Georgia Department of Public Health. Example code used to perform the imputation and bias-adjustment is available on GitHub.
Data Availability
Due to patient confidentiality, data are only available upon request from the Fulton County Board of Health and with IRB approval from the Georgia Department of Public Health. Example code used to perform the imputation and bias-adjustment is available on GitHub (https://github.com/lcolli5/Adaptive-Validation).