Abstract
This paper studies the interplay between the social distancing and the spread of COVID-19 disease—a widely spread pandemic that has affected nearly most of the world population. Starting in China, the virus has reached the United States of America with devastating consequences. Other countries severely affected by the pandemic are Brazil, Russia, United Kingdom, Spain, India, Italy, and France. Even though it is not possible to eliminate the spread of the virus from the world or any other country, it might be possible to reduce its effect by decreasing the number of infected people. Implementing such policies needs a good understanding of the system’s dynamics, generally not possible with mathematical linear equations or Monte Carlo methods because human society is a complex adaptive system with complex and continuous feedback loops. As a result, we use agent-based methods to conduct our study. Moreover, recent agent-based modeling studies for the COVID-19 pandemic show significant promise assisting decision-makers in managing the crisis through applying some policies such as social distancing, disease testing, contact tracing, home isolation, providing good emergency and hospitalization strategies, and preventing traveling would lead to reducing the infection rates. Based on imperial college modeling studies that prove increasing levels of interventions could slow down the spread of disease and infection cases as much as possible, and taking into account that social distancing policy is considered to be the most important factor that was recommended to follow. Our proposed model is designed to test if increasing the social distancing policies strictness can slow down the spread of disease significantly or not, and find out what is the required safe level of social distancing. So, the model was run six times, with six different percentages of social distancing with keeping the other parameters levels fixed for all experiments. The results of our study show that social distancing affects the spread of COVID-19 significantly, where the spread of disease and infection rates decrease once social distancing procedures are implemented at higher levels. Also, the behavior space tool was used to run ten experiments with different levels of social distancing, which supported the previous results. We concluded that applying and increasing social distancing policy levels led to significantly reduced infection rates, which result in decreasing deaths. Both types of experiments prove that infection rates are reduced dramatically when the level of social distancing intervention is implemented between 80% to 100%.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The authors received no specific funding for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
As this work is purely epidemiological computer simulation based, IRB review was not required.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes