Abstract
The timing of transmission plays a key role in the dynamics and controllability of an epidemic. However, observing the distribution of generation times (time interval between the points of infection of an infector and infectee in a transmission pair) requires data on infection times, which are generally unknown. The timing of symptom onset is more easily observed; the generation time distribution is therefore often estimated based on the serial interval distribution (distribution of time intervals between symptom onset of an infector and an infectee). This estimation follows one of two approaches: i) approximating the generation time distribution by the serial interval distribution; or ii) deriving the generation time distribution from the serial interval and incubation period (time interval between infection and symptom onset in a single individual) distributions. These two approaches make different – and not always explicitly stated – assumptions about the relationship between infectiousness and symptoms, resulting in different generation time distributions with the same mean but unequal variances. Here, we clarify the assumptions that each approach makes and show that neither set of assumptions is plausible for most pathogens. However, the variances of the generation time distribution derived under each assumption can reasonably be considered as upper (approximation with serial interval) and lower (derivation from serial interval) bounds. Thus, we suggest a pragmatic solution is to use both approaches and treat these as edge cases in downstream analysis. We discuss the impact of the variance of the generation time distribution on the controllability of an epidemic through strategies based on contact tracing, and we show that underestimating this variance is likely to overestimate controllability.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Swiss National Science Foundation. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the manuscript.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
No IRB needed
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.