Abstract
The pandemic spread of the potentially life-threatening disease COVID-19 requires a thorough understanding of the longitudinal dynamics of host responses. Temporal resolution of cellular features associated with a severe disease trajectory will be a pre-requisite for finding disease outcome predictors. Here, we performed a longitudinal multi-omics study using a two-centre German cohort of 13 patients (from Cologne and Kiel, cohort 1). We analysed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. The results from single-cell and bulk transcriptome analyses were validated in two independent cohorts of COVID-19 patients from Bonn (18 patients, cohort 2) and Nijmegen (40 patients, cohort 3), respectively. We observed an increase of proliferating, activated plasmablasts in severe COVID-19, and show a distinct expression pattern related to a hyperactive cellular metabolism of these cells. We further identified a notable expansion of type I IFN-activated circulating megakaryocytes and their progenitors, indicative of emergency megakaryopoiesis, which was confirmed in cohort 2. These changes were accompanied by increased erythropoiesis in the critical phase of the disease with features of hypoxic signalling. Finally, projecting megakaryocyte- and erythroid cell-derived co-expression modules to longitudinal blood transcriptome samples from cohort 3 confirmed an association of early temporal changes of these features with fatal COVID-19 disease outcome. In sum, our longitudinal multi-omics study demonstrates distinct cellular and gene expression dynamics upon SARS-CoV-2 infection, which point to metabolic shifts of circulating immune cells, and reveals changes in megakaryocytes and increased erythropoiesis as important outcome indicators in severe COVID-19 patients.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The patients consented to the sampling of biomaterials, analytic processing of the biomaterials and genetic analysis, the study was approved by the independent ethical review board of Kiel University (ref number: D 466/20) and Cologne (identifier: 20-1295). 8 healthy donors were included as controls at a single timepoint in the framework of the DZHK study (ethics vote ref number: D 441/16).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Senior authors
Data Availability
As of now, data will be available upon request.