ABSTRACT
Artificial intelligence (AI) has an emerging progress in diagnostic pathology. A large number of studies of applying deep learning models to histopathological images have been published in recent years. While many studies claim high accuracies, they may fall into the pitfalls of overfitting and lack of generalization due to the high variability of the histopathological images. We use the example of Osteosarcoma to illustrate the pitfalls and how the addition of model input variability can help improve model performance. We use the publicly available osteosarcoma dataset to retrain a previously published classification model for osteosarcoma. We partition the same set of images into the training and testing datasets differently than the original study: the test dataset consists of images from one patient while the training dataset consists images of all other patients. The performance of the model on the test set using the new partition schema declines dramatically, indicating a lack of model generalization and overfitting. We also show the influence of training data variability on model performance by collecting a minimal dataset of 10 osteosarcoma subtypes as well as benign tissues and benign bone tumors of differentiation. We show the additions of more and more subtypes into the training data step by step under the same model schema yield a series of coherent models with increasing performances. In conclusion, we bring forward data preprocessing and collection tactics for histopathological images of high variability to avoid the pitfalls of overfitting and build deep learning models of higher generalization abilities.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work is not funded.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Our collection of the histopathological images of the different osteosarcoma subtypes and their sources are available at https://github.com/haimingt/osteosarcoma_subtype_modeling/tree/master/subtypes.
https://github.com/haimingt/osteosarcoma_subtype_modeling/tree/master/subtypes