Genomic architecture and prediction of censored time-to-event phenotypes with a Bayesian genome-wide analysis
Sven E. Ojavee, Athanasios Kousathanas, Daniel Trejo Banos, Etienne J. Orliac, Marion Patxot, Kristi Läll, Reedik Mägi, Krista Fischer, Zoltan Kutalik, Matthew R. Robinson
doi: https://doi.org/10.1101/2020.09.04.20188441
Sven E. Ojavee
1Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
Athanasios Kousathanas
1Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
Daniel Trejo Banos
1Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
Etienne J. Orliac
2Scientific Computing and Research Support Unit, University of Lausanne, Lausanne, Switzerland.
Marion Patxot
1Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
Kristi Läll
3Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
Reedik Mägi
3Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
Krista Fischer
3Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
4Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
Zoltan Kutalik
5University Center for Primary Care and Public Health, Lausanne, Switzerland
6Swiss Institute of Bioinformatics, Lausanne, Switzerland
Matthew R. Robinson
7Institute of Science and Technology Austria, Klosterneuburg, Austria.
Data Availability
This project uses UK Biobank data under project 35520. The Estonian Biobank data are available upon request from the cohort authors with appropriate research agreements.
Posted September 07, 2020.
Genomic architecture and prediction of censored time-to-event phenotypes with a Bayesian genome-wide analysis
Sven E. Ojavee, Athanasios Kousathanas, Daniel Trejo Banos, Etienne J. Orliac, Marion Patxot, Kristi Läll, Reedik Mägi, Krista Fischer, Zoltan Kutalik, Matthew R. Robinson
medRxiv 2020.09.04.20188441; doi: https://doi.org/10.1101/2020.09.04.20188441
Genomic architecture and prediction of censored time-to-event phenotypes with a Bayesian genome-wide analysis
Sven E. Ojavee, Athanasios Kousathanas, Daniel Trejo Banos, Etienne J. Orliac, Marion Patxot, Kristi Läll, Reedik Mägi, Krista Fischer, Zoltan Kutalik, Matthew R. Robinson
medRxiv 2020.09.04.20188441; doi: https://doi.org/10.1101/2020.09.04.20188441
Subject Area
Subject Areas
- Addiction Medicine (380)
- Allergy and Immunology (695)
- Anesthesia (186)
- Cardiovascular Medicine (2809)
- Dermatology (241)
- Emergency Medicine (424)
- Epidemiology (12499)
- Forensic Medicine (10)
- Gastroenterology (796)
- Genetic and Genomic Medicine (4364)
- Geriatric Medicine (398)
- Health Economics (711)
- Health Informatics (2814)
- Health Policy (1042)
- Hematology (372)
- HIV/AIDS (888)
- Medical Education (411)
- Medical Ethics (113)
- Nephrology (460)
- Neurology (4132)
- Nursing (219)
- Nutrition (613)
- Oncology (2178)
- Ophthalmology (616)
- Orthopedics (253)
- Otolaryngology (316)
- Pain Medicine (260)
- Palliative Medicine (80)
- Pathology (482)
- Pediatrics (1166)
- Primary Care Research (480)
- Public and Global Health (6721)
- Radiology and Imaging (1475)
- Respiratory Medicine (893)
- Rheumatology (427)
- Sports Medicine (359)
- Surgery (468)
- Toxicology (57)
- Transplantation (197)
- Urology (173)