Abstract
The novel coronavirus disease-2019 (COVID-19) pandemic has threatened the health of tens of millions of people worldwide and imposed heavy burden on global healthcare systems. In this paper, we propose a model to predict whether a patient infected with COVID-19 will develop severe outcomes based only on the patient’s historical electronic health records (EHR) prior to hospital admission using recurrent neural networks. The model predicts risk score that represents the probability for a patient to progress into severe status (mechanical ventilation, tracheostomy, or death) after being infected with COVID-19. The model achieved 0.846 area under the receiver operating characteristic curve in predicting patients’ outcomes averaged over 5-fold cross validation. While many of the existing models use features obtained after diagnosis of COVID-19, our proposed model only utilizes a patient’s historical EHR to enable proactive risk management at the time of hospital admission.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by The National Library of Medicine grant R01LM012895-03S1 and The National Center for Advancing Translational Science grant 1OT2TR003434-01.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Columbia University Institutional Review Boards.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
No data reference.