ABSTRACT
Controlling the spread of COVID-19 – even after a licensed vaccine is available – requires the effective use of non-pharmaceutical interventions, e.g., physical distancing, limits on group sizes, mask wearing, etc.. To date, such interventions have neither been uniformly nor systematically implemented in most countries. For example, even when under strict stay-at-home orders, numerous jurisdictions granted exceptions and/or were in close proximity to locations with entirely different regulations in place. Here, we investigate the impact of such geographic inconsistencies in epidemic control policies by coupling search and mobility data to a simple mathematical model of SARS-COV2 transmission. Our results show that while stay-at-home orders decrease contacts in most areas of the United States of America (US), some specific activities and venues often see an increase in attendance. Indeed, over the month of March 2020, between 10 and 30% of churches in the US saw increases in attendance; even as the total number of visits to churches declined nationally. This heterogeneity, where certain venues see substantial increases in attendance while others close, suggests that closure can cause individuals to find an open venue, even if that requires longer-distance travel. And, indeed, the average distance travelled to churches in the US rose by 13% over the same period. Strikingly, our mathematical model reveals that, across a broad range of model parameters, partial measures can often be worse than no measures at all. In the most severe cases, individuals not complying with policies by traveling to neighboring jurisdictions can create epidemics when the outbreak would otherwise have been controlled. Taken together, our data analysis and modelling results highlight the potential unintended consequences of inconsistent epidemic control policies and stress the importance of balancing the societal needs of a population with the risk of an outbreak growing into a large epidemic.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
B.M.A. is supported by the Global Good Fund. B.C. is supported as a Fellow of the National Science Foundation under NRT award DGE-1735316. S.V.S. is supported by startup funds provided by Northeastern University. E.R.W. was supported by the COVID-19 Rapid Research Fund from the Gund Institute for Environment at the University of Vermont. L.H.-D. acknowledges support from the National Institutes of Health 1P20 GM125498-01 Centers of Biomedical Research Excellence Award. The funders had no role in study design, data collection, data analysis, the decision to publish, or preparation of the manuscript. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of their respective employers or funders.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Code is available from the authors upon request.