Abstract
Epidemiological and genetic studies on COVID-19 are currently hindered by inconsistent and limited testing policies to confirm SARS-CoV-2 infection. Recently, it was shown that it is possible to predict potential COVID-19 cases using cross-sectional self-reported disease-related symptoms. Using a previously reported COVID-19 prediction model, we show that it is possible to conduct a GWAS on predicted COVID-19, and this GWAS benefits from the larger sample size to provide new insights into the genetic susceptibility of the disease. Furthermore, we find suggestive evidence that genetic variants for other viral infectious diseases do not overlap with COVID-19 susceptibility and that severity of COVID-19 may have a different genetic architecture compared to COVID-19 susceptibility. Our findings demonstrate the added value of using self-reported symptom assessments to quickly monitor novel endemic viral outbreaks in a scenario of limited testing. Should there be another outbreak of a novel infectious disease, we recommend repeatedly collecting data of disease-related symptoms.
Competing Interest Statement
ETC, KMSB, SR, AB, SW, FT, XW, JMR, YWL, JTL, and NLW are employees of Helix. All other authors declare no financial or non-financial conflict of interest.
Funding Statement
Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006] and is currently supported by the Wellcome Trust [216767/Z/19/Z]. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Edinburgh Clinical Research Facility, University of Edinburgh, Scotland and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award 'STratifying Resilience and Depression Longitudinally' (STRADL) Reference 104036/Z/14/Z). Recruitment to this study was facilitated by SHARE - the Scottish Health Research Register and Biobank. SHARE is supported by NHS Research Scotland, the Universities of Scotland and the Chief Scientist Office of the Scottish Government. C.H. is supported by an MRC University Unit Programme Grant MC_UU_00007/10 (QTL in Health and Disease). The Lifelines Biobank initiative has been made possible by funding from the Dutch Ministry of Health, Welfare and Sport; the Dutch Ministry of Economic Affairs; the University Medical Center Groningen (UMCG the Netherlands); the University of Groningen and the Northern Provinces of the Netherlands. The generation and management of GWAS genotype data for the Lifelines Cohort Study was supported by the UMCG Genetics Lifelines Initiative (UGLI). Lifelines COVID-19 data collection was supported by the Netherlands Organization for Scientific Research (NWO): NWO Spinoza Prize (SPI 92-266 to C.W.). L.F. is supported by an NWO Corona Fast-Track grant (440.20.001), an Oncode Senior Investigator grant, a grant from the European Research Council (ERC Starting Grant agreement number 637640 ImmRisk) and an NWO VIDI grant (917.14.374) NTR Covid-19 data collection and data management was supported by NWO and Netherlands Organisation for Health Research and Development (ZonMW) grants 440.20.022 and 480-15-001/674.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Generation Scotland, Lifelines, Lifelines NEXT and Netherlands Twin Registry studies have been approved by an ethics committee. Helix data were collected under IRB Protocol #20170748
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Non-identifiable information from the GS:SFHS cohort is available to researchers in the UK and to international collaborators through application to the GS Access Committee. GS operates a managed data access process including an online application form (http://www.gsaccess.org/) and proposals are reviewed by the GS Access Committee. The Helix data were collected under IRB Protocol #20170748. Data are available from the corresponding author on reasonable request. The Lifelines data analysed in this study was obtained from the Lifelines biobank, under project application number ov20_0554. Requests to access this dataset should be directed to Lifelines Research Office (research{at}lifelines.nl). The NTR data analysed in this study was obtained from the NWO fast-track corona project (440.20.022). Requests to access this dataset should be directed to NTR data repository (ntr.datamanagement.fgb{at}vu.nl)