Abstract
Due to the current COVID-19 epidemic plague hitting the worldwide population it is of utmost medical, economical and societal interest to gain reliable predictions on the temporal evolution of the spreading of the infectious diseases in human populations. Of particular interest are the daily rates and cumulative number of new infections, as they are monitored in infected societies, and the influence of non-pharmaceutical interventions due to different lockdown measures as well as their subsequent lifting on these infections. Estimating quantitatively the influence of a later lifting of the interventions on the resulting increase in the case numbers is important to discriminate this increase from the onset of a second wave. The recently discovered new analytical solutions of Susceptible-Infectious-Recovered (SIR) model allow for such forecast and the testing of lockdown and lifting interventions as they hold for arbitrary time dependence of the infection rate. Here we present simple analytical approximations for the rate and cumulative number of new infections.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research did not receive any funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All ethical guidelines have been followed according to ETH Zurich regulations.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.