ABSTRACT
Evidence-based treatments for children with persistent post-concussion symptoms (PPCS) are few and limited. Common PPCS complaints such as sleep disturbance and fatigue could be ameliorated via the supplementation of melatonin, which has significant neuroprotective and anti-inflammatory properties. This study aims to identify neural correlates of melatonin treatment with changes in sleep disturbances and clinical recovery in a pediatric cohort with PPCS. We examined structural and functional neuroimaging (MRI) in 62 children with PPCS in a randomized, double-blind, placebo-controlled trial of 3mg or 10mg of melatonin (NCT01874847). The primary outcome was the total youth self-report Post-Concussion Symptom Inventory (PCSI) score after 28 days of treatment. Secondary outcomes included the change in the sleep domain PCSI score and sleep-wake behavior (assessed using wrist-worn actigraphy). Whole-brain analyses of (i) functional connectivity (FC) of resting-state fMRI, and (ii) structural grey matter (GM) volumes via voxel-based morphometry were assessed immediately before and after melatonin treatment and compared to placebo in order to identify neural effects of melatonin treatment. Increased FC of posterior default mode network (DMN) regions with visual, somatosensory and dorsal networks was detected in the melatonin groups over time. FC increases also corresponded with reduced wake periods (r=−0.27, p=0.01). Children who did not recover (n=39) demonstrated significant FC increases within anterior DMN and limbic regions compared to those that did recover (i.e. PCSI scores returned to pre-injury level n=23) over time, (p=0.026). Increases in GM volume within the posterior cingulate cortex were found to correlate with reduced wakefulness after sleep onset (r=−0.32, p=0.001) and sleep symptom improvement (r=0.29, p=0.02). Although the melatonin treatment trial was negative and did not result in PPCS recovery (with or without sleep problems), the relationship between melatonin and improvement in sleep parameters were linked to changes in function-structure within and between brain regions interacting with the DMN.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
NCT01874847
Funding Statement
K.M.B. acknowledges funding support from the Canadian Institutes of Health Research (grant number: 293375) and Motor Accident Insurance Commission (MAIC, Queensland, Australia). L.C. is supported by the Australian National Health Medical Research Council (L.C. 1099082 and 1138711).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Approval for this study was granted by the University of Calgary Conjoint Health Research Ethics Board (REB13-0372) and the University of Queensland (2017001523). Written and verbal parental consent and child assent was obtained.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The dataset will be made available upon request to the principal investigator (K.M.B). The use of this dataset in further scientific work will require a data sharing agreement with the University of Calgary.