Abstract
By modelling the evaporation and settling of droplets emitted during respiratory releases and using previous measurements of droplet size distributions and SARS-CoV-2 viral load, estimates of the evolution of the liquid mass and the number of viral copies suspended were performed as a function of time from the release. The settling times of a droplet cloud and its suspended viral dose are significantly affected by the droplet composition. The aerosol (defined as droplets smaller than 5 µm) resulting from 30 seconds of continued speech has o(1 h) settling time and a viable viral dose an order-of-magnitude higher than in a short cough. The time-of-flight to reach 2 m is only a few seconds resulting in a viral dose above the minimum required for infection, implying that physical distancing in the absence of ventilation is not sufficient to provide safety for long exposure times. The suspended aerosol emitted by continuous speaking for 1 hour in a poorly ventilated room gives 0.1–11% infection risk for initial viral loads of 108-1010 copies/mll, respectively, decreasing to 0.03–3% for 10 air changes per hour by ventilation. The present results provide quantitative estimates useful for the development of physical-distancing and ventilation controls.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
None.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, The University of Edinburgh, University of Washington, and Vrije Universiteit Amsterdam.