Abstract
Epidemiological studies on health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis and chemical transport models offer additional information used to reconstruct pollution concentrations at high spatio-temporal resolution. The aim of this study is to develop a multi-stage satellite-based machine learning model to estimate daily fine particulate matter (PM2.5) levels across Great Britain during 2008-2018. This high-resolution model consists of random forest (RF) algorithms applied in four stages. Stage-1 augments monitor-PM2.5 series using co-located PM10 measures. Stage-2 imputes missing satellite aerosol optical depth observations using atmospheric reanalysis models. Stage-3 integrates the output from previous stages with spatial and spatiotemporal variables to build a prediction model for PM2.5. Stage-4 applies Stage-3 models to estimate daily PM2.5 concentrations over a 1 km grid. The RF architecture performed well in all stages, with results from Stage-3 showing an average cross-validated R2 of 0.767 and minimal bias. The model performed better over the temporal scale when compared to the spatial component, but both presented good accuracy with an R2 of 0.795 and 0.658, respectively. The high spatio-temporal resolution and relatively high precision allows this dataset (approximately 950 million points) to be used in epidemiological analyses to assess health risks associated with both short- and long-term exposures to PM2.5.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was supported by the Medical Research Council-UK (Grant ID: MR/M022625/1), the Natural Environment Research Council UK (Grant ID: NE/R009384/1), and the European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655). EMEP4UK Model results and contributions by S.R. and M.V. were supported by award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study is based on publicly available data and it does not make use of sensitive data.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Novel definition of cross-validated predictors for monitor-based variables; results have changed accordingly, with lower cross-validated R2 especially in the spatial part; Stage-I model reverted to annual, which led to exclusion of years 2003-2007 due to low number of monitors for pm2.5; small changes in selection of monitors, with revisiono of inclusion/exclusion criteria; figures updated to better reflect annual and daily variation in space and time.
Data Availability
All data used to perform the analysis are in the public domain. References and sources are provided in the text.