Abstract
Forecasting trends in COVID-19 infections is vital for the global economy, national governments and physical and mental well-being. Using the per capita number of new cases as a proxy for the abundance of the SARS-CoV-2 virus, and the number of deaths as a measure of virulence, the dynamics of the pandemic and the outcomes emerging from it are examined for three locations (England, Italy and New York State). The data are analysed with a new version of a population dynamics model that combines exponential/logistic growth with time-varying carrying capacity, allowing predictions of persistence or extinction of the virus. In agreement with coevolutionary theory, the model suggests a transition from exponential virus growth to low abundance, coupled with reduced virulence, during colonisation of the alternate human host. The structure of the model allows a straightforward assessment of key parameters, which can be contrasted with standard epidemiological models and interpreted with respect to ecological and evolutionary processes and isolation policies.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
MG unfunded NC acknowledges financial support from the Brazilian funding agencies CNPq and FAPERJ.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.