Abstract
SARS-CoV-2 causes multiple immune-related reactions at various stages of the disease. The wide variety of skin presentations has delayed linking these to the virus. Previous studies had attempted to look at the prevalence and timing of SARS-COV-2 rashes but were based on mostly hospitalized severe cases and had little follow up. Using data collected on a subset of 336,847 eligible UK users of the COVID Symptom Study app, we observed that 8.8% of the swab positive cases (total: 2,021 subjects) reported either a body rash or an acral rash, compared to 5.4% of those with a negative swab test (total: 25,136). Together, these two skin presentations showed an odds ratio (OR) of 1.67 (95% confidence interval [CI]: 1.41-1.96) for being swab positive. Skin rashes were also predictive in the larger untested group of symptomatic app users (N=54,652), as 8.2% of those who had reported at least one classical COVID-19 symptom, i.e., fever, persistent cough, and/or anosmia, also reported a rash. Data from an independent online survey of 11,546 respondents with a rash showed that in 17% of swab positive cases, the rash was the initial presentation. Furthermore, in 21%, the rash was the only clinical sign. Skin rashes cluster with other COVID-19 symptoms, are predictive of a positive swab test and occur in a significant number of cases, either alone or before other classical symptoms. Recognising rashes is important in identifying new and earlier COVID-19 cases.
Competing Interest Statement
AB and JW are employees of Zoe Global Limited. TDS is a consultant to Zoe Global Ltd. The other authors have no conflict of interest to declare.
Funding Statement
Zoe Global Limited provided in kind support for all aspects of building, running, and supporting the app and service to all users worldwide. Investigators received support from the Wellcome Trust, the MRC/BHF, Alzheimer's Society, EU, NIHR, CDRF, and the NIHR-funded BioResource, Clinical Research Facility and BRC based at GSTT NHS Foundation Trust in partnership with King's College London. TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, Chronic Disease Research Foundation (CDRF), and the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. This work was also supported by the UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study has been approved by the King's College London Research Ethics Committee REMAS ID 18210, review reference LRS-19/20-18210 and all subscribers provided informed consent.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data collected in the app are being shared with other health researchers through the NHS-funded Health Data Research UK (HDRUK)/SAIL consortium, housed in the UK Secure e-Research Platform (UKSeRP) in Swansea. Anonymized data collected by the symptom tracker app can be shared with bonafide researchers via HDRUK, provided the request is made according to their protocols and is in the public interest (see https://healthdatagateway.org/detail/9b604483-9cdc-41b2-b82c-14ee3dd705f6). Data updates can be found at https://covid.joinzoe.com. The app code is publicly available from https://github.com/zoe/covid-tracker-react-native. The main data cleaning script is publicly available from https://github.com/KCL-BMEIS/zoe-data-prep.
https://healthdatagateway.org/detail/9b604483-9cdc-41b2-b82c-14ee3dd705f6