Abstract
The COVID-19 pandemic has highlighted the patchwork nature of disease epidemics, with infection spread dynamics varying wildly across countries and across states within the US. These heterogeneous patterns are also observed within individual states, with patches of concentrated outbreaks. Data is being generated daily at all of these spatial scales, and answers to questions regarded reopening strategies are desperately needed. Mathematical modeling is useful in exactly these cases, and using modeling at a county scale may be valuable to further predict disease dynamics for the purposes of public health interventions. To explore this issue, we study and predict the spread of COVID-19 in Washtenaw County, MI, the home to University of Michigan, Eastern Michigan University, and Google, as well as serving as a sister city to Detroit, MI where there has been a serious outbreak. Here, we apply a discrete and stochastic network-based modeling framework allowing us to track every individual in the county. In this framework, we construct contact networks based on synthetic population datasets specific for Washtenaw County that are derived from US Census datasets. We assign individuals to households, workplaces, schools, and group quarters (such as prisons). In addition, we assign casual contacts to each individual at random. Using this framework, we explicitly simulate Michigan-specific government-mandated workplace and school closures as well as social distancing measures. We also perform sensitivity analyses to identify key model parameters and mechanisms contributing to the observed disease burden in the three months following the first observed cases on COVID-19 in Michigan. We then consider several scenarios for relaxing restrictions and reopening workplaces to predict what actions would be most prudent. In particular, we consider the effects of 1) different timings for reopening, and 2) different levels of workplace vs. casual contact re-engagement. Through simulations and sensitivity analyses, we explore mechanisms driving magnitude and timing of a second wave of infections upon re-opening. This model can be adapted to other US counties using synthetic population databases and data specific to those regions.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was supported by NIH grants R01AI123093 and U01 HL131072 awarded to DEK. The 2010 U.S. Synthetic Population database was created by RTI International, which is funded 395 by the National Institutes of General Medical Sciences (NIGMS).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
None