Abstract
The cumulative records of COVID-19 are rapidly increasing day by day in India. The key question prevailing in minds of all is when will it get over? There have been several attempts in literature to address this question using time series, Machine learning, epidemiological and statistical models. However due to high level of uncertainty in the domain and lack of big historical data, the performance of these models suffer. In this work, we present an intuitive model that uses a combination of epidemiological model (SEIR) and mathematical curve fitting method to forecast spread of COVID-19 in India in future. By using the combination model, we get characteristics benefits of these models under limited knowledge and historical data about the novel Coronavirus. Instead of fixing parameters of the standard SEIR model before simulation, we propose to learn them from the real data set consisting of progression of Corona spread in India. The learning of model is carefully designed by understanding that available data set consist of records of cases under full, partial to zero lockdown phases in India. Hence, we make two separate predictions by our propose model. One under the situation of full lockdown in India and, other with partial to zero restrictions in India. With continued strict lockdown after May 03, 2020, our model predicted May 14, 2020 as the date of peak of Coronavirus in India. However, in current scenario of partial to zero lockdown phase in India, the peak of Coronavirus cases is predicted to be July 31, 2020. These two predictions presented in this work provide awareness among citizens of India on importance of control measures such as full, partial and zero lockdown and the spread of Corona disease infection rate. In addition to this, it is a beneficial study for the government of India to plan the things ahead.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
The study is on predicting end of COVID-19 in India using mathematical models for which real data sets were available online to use.
Funding Statement
No funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
It was not required since the data set considered for the work was taken from Kaggle.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Young enthusiast in Machine Learning, Email: arnauvgilotra{at}gmail.com
Email: sbabbar{at}univo.amityonline.com
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.