Abstract
At present, the whole world is witnessing a horrifying outbreak caused by the Coronavirus Disease 2019 (COVID-19). The virus responsible for this disease is called SARS-CoV-2. It affects its victims’ respiratory system and causes severe lung inflammation, making it harder for them to breathe. The virus is airborne, and so has a high infection rate. Originated in China last December, the virus has spread across seven continents, affecting the population of over 210 countries, making it one of the fiercest pandemics ever recorded. Despite multiple independent and collaborative attempts to develop a vaccine or a cure, an effective solution is yet to come out. While the disease has put the world in a standstill, detecting the positive subjects and isolating them from the others as soon as possible is the only way to minimize its spread. However, many countries are currently experiencing a massive shortage of diagnostic equipment and medical personals. This insufficiency inspired us to work on a computer-based automatic method for the diagnosis of COVID-19. In this paper, we proposed a sequential Convolutional Neural Network (CNN)-based model to detect COVID-19 through analyzing Computed Tomography (CT) scan images. The model is capable of identifying the disease with almost 92.5% accuracy. We believe the implementation of this model will help the physicians and pathologists all over the world to single out the victims quickly and thus reduce the prevalence of COVID-19.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
N/A
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data set is available in git-hub repository. It is free to use for all.