Predicting the Trajectory of Any COVID19 Epidemic From the Best Straight Line
View ORCID ProfileMichael Levitt, Andrea Scaiewicz, Francesco Zonta
doi: https://doi.org/10.1101/2020.06.26.20140814
Michael Levitt
1Department of Structural Biology, Stanford School of Medicine, Stanford, CA 94305, USA
Andrea Scaiewicz
1Department of Structural Biology, Stanford School of Medicine, Stanford, CA 94305, USA
Francesco Zonta
2Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
Article usage
Posted June 30, 2020.
Predicting the Trajectory of Any COVID19 Epidemic From the Best Straight Line
Michael Levitt, Andrea Scaiewicz, Francesco Zonta
medRxiv 2020.06.26.20140814; doi: https://doi.org/10.1101/2020.06.26.20140814
Subject Area
Subject Areas
- Addiction Medicine (400)
- Allergy and Immunology (711)
- Anesthesia (202)
- Cardiovascular Medicine (2954)
- Dermatology (250)
- Emergency Medicine (443)
- Epidemiology (12766)
- Forensic Medicine (12)
- Gastroenterology (829)
- Genetic and Genomic Medicine (4600)
- Geriatric Medicine (420)
- Health Economics (731)
- Health Informatics (2934)
- Health Policy (1069)
- Hematology (389)
- HIV/AIDS (926)
- Medical Education (427)
- Medical Ethics (116)
- Nephrology (471)
- Neurology (4377)
- Nursing (237)
- Nutrition (640)
- Oncology (2277)
- Ophthalmology (648)
- Orthopedics (258)
- Otolaryngology (325)
- Pain Medicine (279)
- Palliative Medicine (83)
- Pathology (502)
- Pediatrics (1197)
- Primary Care Research (499)
- Public and Global Health (6963)
- Radiology and Imaging (1533)
- Respiratory Medicine (916)
- Rheumatology (441)
- Sports Medicine (385)
- Surgery (491)
- Toxicology (60)
- Transplantation (212)
- Urology (181)