ABSTRACT
Background and Objective Chronic kidney disease (CKD) represent a heavy burden on the healthcare system because of the increasing number of patients, high risk of progression to end-stage renal disease, and poor prognosis of morbidity and mortality. The aim of this study is to develop a machine-learning model that uses the comorbidity and medication data, obtained from Taiwan's National Health Insurance Research Database, to forecast whether an individual will develop CKD within the next 6 or 12 months, and thus forecast the prevalence in the population.
Methods A total of 18,000 people with CKD and 72,000 people without CKD diagnosis along with the past two years of medication and comorbidity data matched by propensity score were used to build a predicting model. A series of approaches were tested, including Convoluted Neural Networks (CNN). 5-fold cross-validation was used to assess the performance metrics of the algorithms.
Results Both for the 6 month and 12-month models, the CNN approach performed best, with the AUROC of 0.957 and 0.954, respectively. The most prominent features in the tree-based models were identified, including diabetes mellitus, age, gout, and medications such as sulfonamides, angiotensins which had an impact on the progression of CKD.
Conclusions The model proposed in this study can be a useful tool for the policy-makers helping them in predicting the trends of CKD in the population in the next 6 to 12 months. Information provided by this model can allow closely monitoring the people with risk, early detection of CKD, better allocation of resources, and patient-centric management
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0209). This work is part of the CrowdHEALTH project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 727560 (JSI) and the Ministry of Science and Technology under project no. 106-3805-018-110 (TMU).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study has been exempted by the Institutional Review Board of Taipei Medical University beforehand.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Fixed a typo in a figure
Data Availability
The data that support the findings of this study are available on request. The data has been taken from Taiwan's National Health Insurance Research Database (NHIRD).