Abstract
The COVID-19 pandemic resulted in lockdowns all over the world thus affecting nearly all aspects of social life and also had a huge impact on global economies. Since vaccines and therapies are still not available for the population, prevention becomes desperately needed. One important aspect for prevention is the identification and subsequent isolation of contagious specimens. The currently used methods for diagnostics are time consuming and also hindered by the limited availability of reagents and reaction costs, thus presenting a bottle neck for prevention of COVID-19 spread. Here, we present a new ultra-fast test method which is ten times faster than conventional diagnostic tests using real time quantitative PCR (RT-qPCR). In addition, this ultra-fast method is easy to handle as well as cost effective. We translated published SARS-CoV-2 testing protocols from the Centers of Disease Control and Prevention (Atlanta, Georgia, USA) and the Charité Berlin (Germany) to the NEXTGENPCR (NGPCR) machine and combined it with a fluorescence-based endpoint measurement. Fluorescence was measured with a commercial blue light scanner. We confirmed the NEXTGENPCR results with commercially available positive controls. In addition, we isolated RNA from SARS-CoV-2 infected patients and achieved similar results to clinical RT-qPCR assays. Here, we could show correlation between the results obtained by NEXTGENPCR and conventional RT-qPCR.
Competing Interest Statement
AH, ML, EA, JS, AK, CKn, CKa, BK, TV have declared no competing interest. GDV and PVH are employees of Molecular Biology Systems B.V., Goes, The Netherlands. Some test-kits and PCR plates were kindly provided by Molecular Biology Systems B.V., Goes, The Netherlands.
Funding Statement
We acknowledge funding by the University of Bielefeld. Some test-kits and PCR plates were kindly provided by Molecular Biology Systems B.V., Goes, The Netherlands. Funding for equipment was partially provided by Evangelisches Klinikum Bethel (EvKB).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All samples were collected by the authors in accordance with the German Act on Medical Devices (MPG, guideline 98/79/EG) for the collection of human residual material to evaluate suitability of an in vitro diagnostic medical device (ş24). The need for informed consent and ethical approval was waived since all materials used were anonymous samples already analysed in routine laboratory diagnostics.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data generated or analyzed during this study are included in this article or can be requested by the author for correspondence: Christian Kaltschmidt c.kaltschmidt@uni-bielefeld.de