Abstract
We formulate an agent-based model and a compartmental model (SEIR) that simulate the spread of a respiratory infectious disease between two neighboring cities. We consider preventive measures such as implementation of social distancing and lockdown in a city, as well as the effect of protective gears or practices. The chance of travelling to another city and within the city during lockdown, and initial percentage of exposed and infected individuals on both cities influence the increase in the number of newly-infected individuals on both models. Our simulations show that (i) increase in exposed individuals results in increase in number of new infections, hence the need for increased testing-isolation efforts; (ii) protection level of 75-100% effectiveness impedes disease transmission; (iii) travelling within city or to other city can be an option given that strict preventive measures (e.g., non-pharmaceutical interventions) are observed; and (iv) the ideal set-up for neighboring cities is to implement lockdown when there is high risk of disease local transmission while individuals observe social distancing, maximizing protective measures, and isolating those that are exposed. The results of the agent-based and compartmental models show similar qualitative dynamics; the differences are due to different spatio-temporal heterogeneity and stochasticity. These models can aid decision makers in designing infectious disease-related policies to protect individuals while continuing population movement.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received for the study.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This is a mathematical model thus IRB guidelines are not applicable.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.