Abstract
Congenital heart disease (CHD) is the most common birth defect. Fetal survey ultrasound is recommended worldwide, including five views of the heart that together could detect 90% of complex CHD. In practice, however, sensitivity is as low as 30%. We hypothesized poor detection results from challenges in acquiring and interpreting diagnostic-quality cardiac views, and that deep learning could improve complex CHD detection. Using 107,823 images from 1,326 retrospective echocardiograms and surveys from 18-24 week fetuses, we trained an ensemble of neural networks to (i) identify recommended cardiac views and (ii) distinguish between normal hearts and complex CHD. Finally, (iii) we used segmentation models to calculate standard fetal cardiothoracic measurements. In a test set of 4,108 fetal surveys (0.9% CHD, >4.4 million images, about 400 times the size of the training dataset) the model achieved an AUC of 0.99, 95% sensitivity (95%CI, 84-99), 96% specificity (95%CI, 95-97), and 100% NPV in distinguishing normal from abnormal hearts. Sensitivity was comparable to clinicians’ task-for-task and remained robust on external and lower-quality images. The model’s decisions were based on clinically relevant features. Cardiac measurements correlated with reported measures for normal and abnormal hearts. Applied to guidelines-recommended imaging, ensemble learning models could significantly improve detection of fetal CHD and expand telehealth options for prenatal care at a time when the COVID-19 pandemic has further limited patient access to trained providers. This is the first use of deep learning to ∼double standard clinical performance on a critical and global diagnostic challenge.
Competing Interest Statement
Some methods used in this work have been filed in a provisional patent application.
Funding Statement
No entity other than the authors listed played any role in the design of the study; the collection, analysis, or interpretation of data; writing of the report; or in the decision to submit the paper for publication. This work was supported by the American Heart Association, the National Institutes of Health, and the Department of Defense.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
UCSF Boston Children's Hospital
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.