Abstract
The recent human coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared as a global pandemic on 11 March 2020 by the World Health Organization. Given the effects of COVID-19 in pulmonary tissues, chest radiography imaging plays an important role for the screening, early detection and monitoring of the suspected individuals. Hence, as the pandemic of COVID-19 progresses, there will be a greater reliance on the use of portable equipment for the acquisition of chest X-Ray images due to its accessibility, widespread availability and benefits regarding to infection control issues, minimizing the risk of cross contamination. This work presents novel fully automatic approaches specifically tailored for the classification of chest X-Ray images acquired by portable equipment into 3 different clinical categories: normal, pathological and COVID-19. For this purpose, two complementary deep learning approaches based on a densely convolutional network architecture are herein presented. The joint response of both approaches allows to enhance the differentiation between patients infected with COVID-19, patients with other diseases that manifest characteristics similar to COVID-19 and normal cases. The proposed approaches were validated over a dataset provided by the Radiology Service of the Complexo Hospitalario Universitario A Coruña (CHUAC) specifically retrieved for this research. Despite the poor quality of chest X-Ray images that is inherent to the nature of the portable equipment, the proposed approaches provided satisfactory results, allowing a reliable analysis of portable radiographs, to support the clinical decision-making process.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the DTS18/00136 research projects and by the Ministerio de Ciencia, Innovacion y Universidades, Government of Spain through the RTI2018-095894-B-I00 research projects, as well as through Ayudas para la formacion de profesorado universitario (FPU), Ref. FPU18/02271. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro de Investigacion del Sistema Universitario de Galicia, Ref. ED431G 2019/01.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The used data in this research have been previously anonymized. Local ethics committee approved the study and tenets of the Declaration of Helsinki were followed.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data is not yet available.