Abstract
The SIR epidemiological equations model new affected and removed cases as roughly proportional to the current number of infected cases. The present report adopts an alternative that has been considered in the literature, in which the number of new affected cases is proportional to the α ≤ 1 power of the number of infected cases. After arguing that α = 1 models exponential growth while α < 1 models polynomial growth, a simple method for parameter estimation in differential equations subject to noise, the random-time transformation RTT of Bassan, Meilijson, Marcus and Talpaz 1997, will be reviewed and applied in an attempt to uncover the growth pattern of Covid19.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not relevant
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
E-mail: nitayalon{at}tauex.tau.ac.il
Data Availability
The data analyzed in this work is taken from the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University.