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Abstract

The SIR epidemiological equations model new affected and removed cases as roughly proportional
to the current number of infected cases. The present report adopts an alternative that has been
considered in the literature, in which the number of new affected cases is proportional to the
α ≤ 1 power of the number of infected cases. After arguing that α = 1 models exponential
growth while α < 1 models polynomial growth, a simple method for parameter estimation
in differential equations subject to noise, the random-time transformation RTT of Bassan,
Meilijson, Marcus and Talpaz 1997, will be reviewed and applied in an attempt to uncover
the growth pattern of Covid19.

1 Introduction

The SIR epidemiological model - Kermack & McKendrick [6]. Let S(t) = K − X(t) be
the number of susceptible cases at time t, expressed in terms of the number of affected cases X(t)
and the possibly unknown parameter K (that may or may not be the population size N usually
substituted for K). Let R(t) be the removed cases at time t, dead or recovered.

Let I(t) = S(t)−R(t) be the number of infected cases at time t. The common formulation of the
SIR (Susceptible, Infected, Removed) epidemiological model is the variant of the system of ODE

dX(t) = β(t)g(I(t))(1−X(t)/K)dt (1)

dR(t) = γI(t)dt (2)

I(t) = X(t)−R(t) (3)

where K = N and g(x) = x. Under these substitutions, the parameter β(t) is generally estimated
by smooth local regression of X-increments with respect to the RHS of (1). The basic reproduction

number R0 = β(t)
γ is of primary importance, as its transition from above to below 1 indicates whether

the epidemic is spreading or dwindling, whether the number of infected cases I increases or decreases
with time.

Equations (2) and (3) as well as the linear appearance of the susceptible cases in (1) are quite
straightforward under a stationary regime, but the role of I(t) in (1) needs some attention. The
effective vicinity of a susceptible case need not be the entire infected cohort, just as the asymptote
of affected cases need not be population size N .

This report will illustrate on the Covid19 2020 data that the SIR system of equations may
accept an almost exact solution in which β (and not only γ) is constant, provided g(·) is modelled
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as g(x) = xα for some α < 1 as has been repeatedly suggested in the literature (see Bjørnstad,
Finkenstädt and Grenfell in their various publications, such as [4] and the references therein).

K is the asymptote to which the number X of affected cases converges, the maximal sub-
population size to become affected. This scenario-dependent random object K will be treated as a
parameter.

Had the function g, modelling the impact of the current extent of infection on the emergence of
new cases, been known, parameter estimation via these differential equations would have provided
(unjustifiably) accurate estimates of the asymptote K. Once g(x) = x is rejected in favor of
g(x) = xα for some α < 1, this shape parameter α has to be estimated together with (K,β, γ),
and the overall effect on K is less clear-cut.

Exponential or asymptotically constant growth? The cases α = 1 and α < 1 are not
just variations on a mathematical abstraction. This dichotomy differentiates in principle between
exponential and sub-exponential growth. If population is infinite,

The α = 1 equations

dX(t) = β(X(t)−R(t))dt (4)

dR(t) = γ(X(t)−R(t))dt (5)

i.e., dI(t) = (β − γ)I(t)dt, lead to I(t) = I(0) exp{(β − γ)t}, and then X(t) = X(0) exp{βt} ,
R(t) = R(0) exp{γt}. This is exponential growth.

The α < 1 equations

dX(t) = β(X(t)−R(t)αdt (6)

dR(t) = γ(X(t)−R(t))dt (7)

i.e.,
dI(t) = (βI(t)α − γI(t))dt (8)

admit a constant solution

I(t) ≡ I0 = (
β

γ
)

1
1−α (9)

under which

X(t) ≈ X(0) +
β

1
1−α

γ
α

1−α
t ; R(t) ≈ R(0) +

β
1

1−α

γ
α

1−α
t (10)

are parallel linear functions. I.e., new affected cases and new removed cases are invariant in time,
with an invariant level of infected cases. This is asymptotically linear growth of the cumulative
number of affected cases, with an initial convex polynomial behavior.

But population size is finite, and the target sub-population may be even smaller. If Equation (4)
is replaced by Equation (1) with K re-incorporated and g(x) = xα, solutions invariably show the
typical Covid19 behavior of empirical data, number of infected cases I(t) that rather than converge
to I0 defined in (9), increase to a maximum (for which I0 is a sort of upper bound) and then decrease,
towards zero hopefully.

A word of warning explaining ”a sort of”, all parameters are estimated jointly under the given
empirical data. It is not clear that these parameters, especially β, apply verbatim to other
K-scenarios. Take into account also that there are other built-in assumptions throughout, that
recovered cases become immune, and prevailing conditions don’t change. These are issues for further
thought.

All countries analyzed in the sequel based on data until early June 2020, with the possible
exception of those with insufficient data, display α values far below 1 (and K values far below N).
The profile likelihood function of alpha (likelihood function maximized over all other parameters
per value of alpha, Murphy and Van Der Vaart [8]) is generally quite flat, so α is somewhat noisily
estimated.
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Figure 1: Logarithm of affected, infected and removed cases under γ = 0.05 and K = 500.000. Left,
α = 0 and β = 10000. Middle, α = 0.75 and β = 2. Right, α = 1 and β = 0.125
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Figure 2: Logarithm of affected and infected cases, March to June 2020. Left, France. Middle,
Germany. Right, Italy

At the end of May 2020 most countries and the world as a whole displayed number of infected
cases increasing with time, making estimation more speculative than for countries where the basic
reproduction number R0 crossed already below 1.

Figure 1, based roughly on Brazil data analysis, displays the logarithm of the theoretical solution
to the SIR equations for 500 days with γ = 0.05 and arbitrarily chosen K = 500.000, starting with
one affected and infected case. On the left α = 0 and β = 10000, in the middle α = 0.75 and β = 2,
on the right α = 1 and β = 0.125. The values of β for α = 0 and α = 1 were calibrated so that the
maximal number of infected cases will mimic that of the figure in the middle.

Figure 2 displays the logarithms of the empirical number of affected and infected cases in France,
Germany and Italy. The observed data conform with the sub-exponential growth represented by
0 < α < 1.

Remark on the R0 transition below 1. It is quite popular these days to welcome this transition,
wrongly referred to as leaving behind exponential growth in favor of a period of recovery. This
transition occurs at the moment when the number of infected cases is at a maximum, where care
should be perhaps strengthened rather than relaxed. All graphs in the sequel show that the recovery
period until the number of infected cases is at a safer low level ”in the current wave”, is long and
slow. The USA is at the transition point in early June, but if conditions stay stationary, the current
wave is predicted to be still at unsafe levels in November. Germany and Italy are predicted to
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Figure 3: SIR functions with K = 500.000 and γ = 0.01. α ranges over [0, 1] and β achieves that the
maximal number of infected cases is K

2 . Left, the SIR solutions. Right, the same functions shifted

so as to start when the number of affected cases is K
10

experience unsafe levels at least until the end of August.

2 The role of α for finite populations

Consider the solution to the SIR equations for K = 500.000 and γ = 0.01. For each value of α from
0 to 1 (inclusive), at intervals of 0.05, β is determined so that the maximal value of Y is K

2 . These
21 solutions to the SIR equations are plotted in the left side of Figure 3. It is apparent that α has
a strong effect on the time it takes for the disease to become noticeable. The right side of Figure
3 displays exactly the same data, shifted in time so as to start from the day when the number of
affected cases X reaches K

10 . All 21 functions are similar to each other, and no wonder there is a
relatively high variability in the estimation of α. This nuisance parameter is like a chemical catalyzer
- important for the statistical analysis but not very relevant for the result.

Initial data, that could have been informative in estimating α, is generally unreliable. Hence,
analysis is restricted to the data past a threshold on the number of affected casesX. The positive side
is that the conclusions are then quite insensitive to this lack of knowledge about α. The introduction
of this rather diffuse α prevents spurious as-if accuracy in the estimation of the other parameters.

In the benefit of focus, we refrain from studying further the possibilities opened by this section.
Suffice to stay at this stage that log(β) comes out a perfectly linear function of α. A subject for
further study.

3 Preliminary data handling and analysis

Equation (2) expresses the reasonable premise that new removed cases are proportional to the
number of infected cases. I.e., the cumulative number R of removed cases should be proportional to
the cumulative sum of currently infected cases. A linear regression with slope γ and zero intercept
should manifest this relationship. After checking that this is roughly so, the empirically measured
affected cases X are kept intact but its division into removed cases R and infected cases I is modified
minimally so that the regression relation will hold. The method by which this pre-processing has
been done can be found in the Appendix, together with an 8-country illustration of the effect of
pre-processing. Figures 4-9 display on the right the raw and pre-processed data for a number of
countries. This pre-processing regression provides interim estimates of γ very close to the MLE
estimate derived from the RTT method to be described.
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The data of Italy and USA show close agreement between raw and pre-processed versions, with
the pre-processed version smoothing relatively sharp jumps in the raw data.

The data of Brazil show close agreement, but still at an early stage in the epidemic.
The data of Germany and Switzerland show some disagreement in the number of infected cases.

Regression pre-processing can be a tool for reverse engineering. It is apparent from the data that
both countries failed to recognize recovered cases until March 25, and from then on Switzerland
updated the number of recovered cases every week or so.

A similar reporting problem prevents proper analysis of the Swedish data, that updates the
number of recovered cases seven times in the four months of Corona monitoring. It would have
been interesting to watch more closely at the epidemic development in a country that imposed no
regulatory measures.

The data of Belgium is of special interest. It has been announced that Belgium recorded as
affected cases also those under doubt. As a result, it appears as if it holds record high deaths per
million, and number of infected cases that is still growing on June 7th, unlike all its neighbors.
Pre-processing is in sharp disagreement with the raw data, placing Belgium in the same standard
stage as its neighbors, well past the transition to R0 below 1, and suggesting lethality not above
standard European levels.

The data of Chile and France in Figure (10) show drastic corrections in the number of recovered
cases, rendering analysis difficult. Although Chilean raw and modified data show agreement when
the last 10 days are omitted Figure (12), the later drastic corrections place accuracy in doubt.

The data of Iran (Figure (10) and Israel (Figure 11) show clear evidence of exit from steady
conditions. However, Israel pre-processed data show (Figure 12) some disagreement with pre-
processed data similarly to Germany and Switzerland, already before relaxing restrictions.

Equation (8) states that early in the epidemic dI(t) ≈ β(I(t))α or (I(t))1−α

1−α ≈ β(t−t0) for some t0.
The parameter α can thus be initially estimated by the one that maximizes the correlation coefficient
between (I(t))1−α and time, on a properly chosen time interval. If this correlation coefficient is close
enough to 1, the α-model can be adopted, and the date t0 when the epidemic started, can be roughly
assessed, together with α and β. Results are omitted in favor of the analysis in the sequel, but the
maximal achieved correlation coefficient exceeded 0.98 in all nine countries tried.

Data for analysis consist of the empiricalX data and the I and R data modified by pre-processing.
The next section will introduce parameter estimation of K,α, β, γ under the SIR equations.

4 RTT applied to Covid19 2020

The paradigm to be adopted is that α is a (possibly location-dependent) characteristic of the
condition, while K is a local-scenario parameter that reflects behavior and regulatory measures. It
is important to estimate all parameters jointly in order to obtain as accurate an estimate of α, β, γ
as feasible. This will allow the calculation of I0 in (9) as an estimated upper bound (corresponding
to an infinite population) on the ongoing number of infected cases as well as of the slope of the linear
functions in (10), the condition incidence per unit time.

The RTT method to solve differential equations with data subject to noise. The relatively
novel theoretical contribution of this report is the RTT method to mimic systems of deterministic
differential equations by stochastic counterparts, conceptually different and simpler than the stochastic
differential equations based on Diffusion processes.

Parameter estimation (β, γ,K, α) will be performed by the Random Time Transformation (RTT)
method developed by Bassan, Marcus, Meilijson and Talpaz [2], motivated by the notion of Skew
Product in Ergodic Theory (see, e.g., Krengel [7]). Unlike Diffusion methods that place noise
vertically, the RTT method adopts the solution to the deterministic system of differential equations,
but considers it as evaluated at a random time process that advances on the average like chronological
time. Thus, errors are horizontal. This random time is modelled in practice as a Gaussian process
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(Brownian Motion or Ornstein-Uhlenbeck) and this provides a likelihood model for the estimation
of parameters inherent in the SIR (or otherwise) system of ODE. The differential terms g(I(t))(1−
X(t)/K) and I(t) in equations (1,2) identify the Jacobian term in the likelihood function, for the
application of MLE, including both point estimates and standard errors. As will be seen, for fixed
K and α the RTT method identifies β and γ directly, without reference to the Gaussian part. The
likelihood model to be described thus provides a profile likelihood in terms of K and α only.

Empirical data consist of (X1, R1), (X2, R2), . . . , (Xn, Rn), from which the infected case totals
Yj = Xj −Rj can be inferred and then modified if needed, as described in Section 3. The sequences
X and R are assumed or forced to be non-decreasing. The plan to be pursued is to solve the
system above of ODE globally, as adequately as feasible, and if this plan succeeds and produces
smooth, calculable, functions (x, r, i) that tightly fit the empirical data, it will provide a prediction
of the maximal future damage K that X will sustain, as well as of the timing of the transition from
increasing to decreasing number of infected cases, or warn that such a transition is not due to happen
in the foreseeable future. Furthermore, these functions, that may involve newly defined parameters
that epidemiologists have no classical interpretation for, may replace the sparse and noisy empirical
data for standard analysis.

With this in mind, here is a detailed description of the RTT method. No attempt will be made
to solve the SIR system analytically. Instead, a small increment of time δ = 1

M is set, and the
ODE is solved numerically as a difference equation. Interpreting as time the indices of the empirical
data, M = 100 is a reasonable choice. Numerical methods other than the näıve choice (11) to solve
differential equations may be substituted, of which the most obvious is to apply i and K − x in the
RHS of (11) evaluated at j − 1

2 instead of j − 1. It only makes a negligible difference. The overly
exact choice M = 100 reduced the need to address this issue.

Fix the parameters β, γ,K and the function g, initiate functions x and r asX1 andR1 respectively,
initiate i as X1 −R1 and proceed with the definition for j ≥ 2

x(j) = x(j − 1) + βg(i(j − 1))(1− x(j − 1)

K
)δ

r(j) = r(j − 1) + γi(j − 1)δ

i(j) = x(j)− r(j) (11)

Regular Least Squares essentially estimate parameters by minimizing a sum of squares of the
vertical errorsX(i)−x(Mi), R(i)−r(Mi), I(i)−i(Mi). Diffusion methods adopt the ODE formulation
as drift and incorporate some model for the diffusion term. The Fokker-Planck equations provide
transition densities, that define the likelihood function. Parameter estimation via Fokker-Planck
transition densities is numerically involved, not easily accessible for standard application to a new
problem. As will be seen in the sequel, RTT is.

As introduced above, the RTT idea works instead with horizontal errors:

Define the random time trajectory as starting as T1(1) = 1, T2(1) = 1. For m = 2, 3, · · · , n, let
T1(m) be the smallest j for which x(j) ≥ Xj and let T2(m) be the smallest j for which r(j) ≥ Rj .
Better yet, let T1(m) and T2(m) be the linear interpolants between j − 1 and j that achieve the
values Xm and Rm exactly.

Now solve for β and γ so that T1(n) = T2(n) = n. That is, incremental time has average 1
in both equations. Define ∆1(m) = T1(m + 1) − T1(m) and ∆2(m) = T2(m + 1) − T2(m), for
m = 1, 2, · · · ,m− 1 as the (mean-1) increments of the T1 amd T2 processes.

The requirement that random time coincide with chronological time at the extremes has some
similarity to the adoption of Stratonovich solutions to differential equations. RTT resorts to
randomness only beyond this point, unlike Ito solutions, under which β and γ are prone to be
influenced by noise too. For details on these stochastic integrals and Fokker-Planck or Kolmogorov
forward equations, consult Karatzas and Shreve [5].
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Country α β γ σX σR ρ K Xmax

Belgium 0.497 16.06 0.014 0.296 0.071 0.240 61510 59072
Brazil 0.849 0.57 0.046 0.255 0.148 0.578 N/A 672846
Germany 0.382 131.00 0.070 0.343 0.044 0.127 198917 185450
Italy 0.605 9.97 0.030 0.193 0.079 0.410 246234 234801
Switzerland 0.586 10.8 0.067 0.228 0.535 0.252 31575 30956
USA 0.246 1380.26 0.011 0.118 0.023 0.192 3370399 1920061

Table 1: Parameter estimation based on data until June 7, 2020

Country α β γ σX σR ρ K Xmax

Italy 0.605 9.99 0.028 0.168 0.063 0.377 245431 230158
USA 0.272 478.24 0.011 0.143 0.042 0.294 2699321 1662302

Table 2: Parameter estimation based on data until May 25, 2020

If population size N was substituted for K and the identity function for g, work is over. For
quality-of-fit sanity check, plot the (x, r, i) solution with the (X,R, I) data, that agree at both time
endpoints.

Alternatively, consider K and α as free parameters, to be estimated from the data.

The likelihood function induced by the RTT method. View the incremental times
(∆1(m),∆2(m)) as observations from a bivariate mean-zero Gaussian distribution, and let Σ be
their empirical covariance matrix. Up to a multiplicative constant, the normal density evaluated at

these data is (det(Σ))−
n−1
2 .

Alternatively, view the processes T1(m)−m and T2(m)−m as bivariate Gaussian random walk
bridges. These two models yield equivalent Gaussian density functions. As a result, the simpler
as-if i.i.d. formulation is adopted. For details on the random walk bridge covariance function and
its inverse, consult [3].

The random time likelihood function for the RTT model is obtained by multiplying the random
time density described above by the Jacobian of the transformation. This can be easily seen to be
the ratio of 1 over the product over the sample of the differential terms βg(Xm −Rm)(1−Xm/K)

and γ(Xm −Rm), perhaps evaluated at Xm+Xm−1

2 and Rm+Rm−1

2 instead of Xm and Rm. It doesn’t
make a difference, as the main regularization role of the Jacobian is to penalize the Gaussian Least
Squares into producing smoother solutions.

The diffusion and random time methods are similar. Appendix 2 expands on this similarity.

The parametersK and α are MLE-estimated by maximizing the logarithm of this profile likelihood
function, and their standard errors (and correlation coefficient, if needed) are estimated as usual,
via the empirical Fisher information.

5 Covid19 analysis in six countries

Section 3 hinged on the relation between raw and pre-processed data, as displayed by the right side
of Figures 4-9. The left side extends the RTT solutions to SIR a few months into the future, and
reports 95% pointwise confidence intervals.

The analysis of the Brazilian data leads to a high value of α, indicating fast, nearly exponential
growth. Covid19 started relatively late, and analysis is brought as illustration only.

The analysis of the USA data indicates that the transition to R0 below 1 is around the end of
monitoring for this report. Estimation on data until May 25th (Table 2) predicts maximal number
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Figure 4: SIR model, data pre-processing and RTT solution, Belgium, March to June 2020
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Figure 5: SIR model, data pre-processing and RTT solution, Brazil, March to June 2020

of affected cases K = 2.7 million, but it turns out to be an optimistic assessment, revised June 7th
(Table 1) to 3.37 million. According to these assessments, if status quo of conditions is maintained,
the current wave of the epidemic would still be quite strong in December. Under the same conditions,
Germany and Italy would see the epidemic nearly over by September.

The analysis of the Belgian data should be interpreted as a qualitative assessment that the
epidemic progress in Belgium is essentially similar to that of its neighbors and casualties have been
exaggerated, but it would not be reasonable to express quantitative conclusions.

6 A remark on incremental new cases

In principle, the increments X(i)−X(i− 1) should be independent, Poisson distributed with some
local mean, provided by the differential equations. Poisson random variables Z, positive and with
variance equal to the mean, should display when this mean is at least 5 or so, the remarkable
property that

√
Z has standard deviation very close to, and fast converging to 1

2 . Whether or not

this theoretical fact is satisfied empirically by the F (i) =
√
max(1, X(i)−X(i− 1)) data can be

checked without reference to the differential equations. Simply, choose a window size WS such as 5
or 10, do for each i linear regression of F (i−WS : i+WS) on time (i−WS : i+WS), and record
the averages and slopes or correlation coefficients of these lines as well as the standard deviations
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Figure 6: SIR model, data pre-processing and RTT solution, Germany, March to June 2020
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Figure 7: SIR model, data pre-processing and RTT solution, Italy, March to June 2020

Mar May Jul Sep Nov

0
1

2
3

4

Days

N
um

be
r 

of
 c

as
es

 *
 1

00
00

Mar 12

Mar 12

Jun 07

Nov 01 Mar Apr May Jun

0
1

2
3

4

Days

N
um

be
r 

of
 c

as
es

 *
 1

00
00

Mar 12

Mar 12

Jun 07

Jun 15

Figure 8: SIR model, data pre-processing and RTT solution, Switzerland, March to June 2020
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Figure 9: SIR model, data pre-processing and RTT solution, USA, March to June 2020

σ̂i of the residuals. These standard deviations are supposed to estimate 1
2 , or else assist in data

diagnosis or identify a batch-size of arrivals. Italy and USA display weekly seasonality in which
significantly less cases are reported on weekends, and delayed reporting could be more the rule than
the exception. In any case, the empirical standard deviations σ̂i are so much bigger than 1

2 that
probabilistic modelling methods based on the Poisson hypothesis are not justified.

7 Appendix 1: Correction of the number of infected cases

Let B be the n by n matrix with zeros above the diagonal and ones on and below the diagonal. Let
A be the 2n by n matrix that has γB in the first n rows and γB plus the identity matrix in the last
n rows. Let V be a column vector with R in the top half and X in the bottom half. The regression
equation AÎ ≈ V precisely expresses that R should be β times the cumulative sum of the I values,
and X should be the latter vector (approximately R) plus I. The ”regression coefficients” Î are
a compromise to manifest this requirement. Once determined, the removed cases are re-defined as
R̂ = X − Î. The initial parts of the vectors R̂ and Î are further modified if necessary to prevent
negative values or violation of monotonicity of R̂.
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Figure 10: Data pre-processing: Raw in blue, modified in green. Chile (top left), France (top right),
India (bottom left) and Iran (bottom right), March to June 2020
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Figure 11: Data pre-processing: Raw in blue, modified in green. Israel (top left), Peru (top right),
Russia (bottom left) and Turkey (bottom right), March to June 2020

Mar 15 Apr 01 Apr 15 May 01 May 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

days

P
op

ul
at

io
n 

/ 1
e+

05

Mar 15 Apr 01 Apr 15 May 01 May 15

0.
0

0.
5

1.
0

1.
5

2.
0

days

P
op

ul
at

io
n 

/ 1
00

00

Figure 12: Data pre-processing: Raw in blue, modified in green. Chile (left) and Israel (right),
March to May 25th 2020

8 Appendix 2: A connection between RTT ande Diffusions

If the processes X and R are diffusions and time increments are small enough, these processes
behave locally as Brownian motions with drift given by the integrands in (11) and some diffusion
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coefficients. As such, the incremental random times (now denoted by τ) are first passage times of
Brownian motion, first hitting time of a constant height D, and as such have well known density
functions, that should have been used to build the likelihood model. In the benefit of simplicity and
the ease with which the normal approximation handles dependent random times, we opted above
for this inaccuracy.

This outlook allows for a deeper analysis. Let any of the two Brownian motions Bt dealt with
have local drift µ > 0 and standard deviation σ. Since Bt − µt and (Bt − µt)2 − σ2t are mean-zero
Martingales, their expected values at τ are zero too. This implies that τ has mean D

µ and variance
σ2D
µ3 . Hence, as in the application above τ has mean 1 and constant variance, σ must be proportional
to µ. So the stochastic differential equation corresponding to the deterministic differential equation
(1)-(2) has diffusion additions proportional to the drifts. Sticking to the assumption that sampling is
frequent enough, the Fokker-Planck equations will lead to a likelihood function close to the Gaussian
likelihood with exponential term (for the X-process, similarly for R)

exp{− 1

2σ2

∑
(
X(i+ 1)−X(i)

x( i+1
δ )− x( iδ )b

− 1)2}

and the corresponding denominator. The terms x( i+1
δ )− x( iδ ) can be replaced by the mid-interval

differentials (drifts) in (11).
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[4] Grenfell, B.T., Bjørnstad, O.N. and Filkenstädt, B. A. (2002) Dynamics of Measles epidemics:

scaling, noise, determinism and predictability with the TSIR model. Ecological Monographs,

72(2), 185-–202.

13

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.13.20130468doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.13.20130468
http://creativecommons.org/licenses/by-nd/4.0/


[5] Karatzas, I. and Shreve, S. E. (1998). Brownian Motion and Stochastic Calculus. Graduate

texts in Mathematics, Springer.

[6] Kermack, W. O., McKendrick, A. G. (1927). A Contribution to the Mathematical Theory of

Epidemics. Proceedings of the Royal Society A, 115 (772), 700-–721.

[7] Krengel, U. (1985). Ergodic theorems. de Gruyter.

[8] Murphy, S. A. and Van Der Vaart, A. W. (2000). On Profile Likelihood. Journal of the American

Statistical Association.

14

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.13.20130468doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.13.20130468
http://creativecommons.org/licenses/by-nd/4.0/

