Abstract
Strategies for monitoring the COVID-19 infection are crucial for combating the pandemic. Here we describe a method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes. It can simultaneously detect SARS-CoV-2 and co-infecting respiratory viruses, and monitor mutations for up to 96 samples in real time. The method, termed NIRVANA for Nanopore sequencing of Isothermal Rapid Viral Amplification for Near real-time Analysis, showed high sensitivity and specificity for SARS-CoV-2 in 70 clinical samples. It also simultaneously detected other viral pathogens (e.g. influenza A) in clinical and municipal wastewater samples. It provides a rapid field-deployable solution of COVID-19 and cos-infection detection and surveillance of the evolution of pandemic strains.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The research of the Li laboratory was supported by KAUST Office of Sponsored Research (OSR), under award numbers BAS/1/1080-01. The work was supported by a KAUST Competitive Research Grant (award number URF/1/3412-01-01) given to ML and JCIB. This work was supported by Universidad Catolica San Antonio de Murcia (JCIB). AMH is supported by funding from the deputyship for Research and Innovation, Ministry of Education in Saudi Arabia (project number 436).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The use of clinical samples in this study is approved the internal review board (IRB# H-02-K-076-0320-279) of MOH and KAUST Institutional Biosafety and Bioethics Committee (IBEC).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
The throughput of NIRVANA has been increased to 96 samples in one sequencing run. It has also been upgraded to simultaneously detect other viral pathogens (e.g. influenza A) in clinical and municipal wastewater samples. It provides a rapid field-deployable solution of COVID-19 and co-infection detection and surveillance of the evolution of pandemic strains.
Data Availability
RTNano and sequencing data in this study are available upon request.