ABSTRACT
The novel coronavirus disease (COVID-19) and pandemic has taken the world by surprise and simultaneously challenged the health infrastructure of every country. Governments have resorted to draconian measures to contain the spread of the disease despite its devastating effect on their economies and education. Tracking the novel coronavirus 2019 disease remains vital as it influences the executive decisions needed to tighten or ease restrictions meant to curb the pandemic. One-Dimensional (1D) Convolution Neural Networks (CNN) have been used classify and predict several time-series and sequence data. Here 1D-CNN is applied to the time-series data of confirmed COVID-19 cases for all reporting countries and territories. The model performance was 90.5% accurate. The model was used to develop an automated AI tracker web app (AI Country Monitor) and is hosted on https://aicountrymonitor.org. This article also presents a novel concept of pandemic response curves based on cumulative confirmed cases that can be use to classify the stage of a country or reporting territory. It is our firm believe that this Artificial Intelligence COVID-19 tracker can be extended to other domains such as the monitoring/tracking of Sustainable Development Goals (SDGs) in addition to monitoring and tracking pandemics.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Neither the authors or their institutions received funding for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This work does not need any approval of the IRB/oversight body.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.