Abstract
COVID-19 pandemic is an enigma with uncertainty caused by biological and health systems factors. Although many models have been developed all around the world, transparent models that allow interacting with the assumptions will become more important as we test various strategies for lockdown, testing and social interventions and enable effective policy decisions. In this paper we developed a suite of models to guide development of policies under different scenarios when the lockdown opens. These had been deployed to create an interactive dashboard called COVision which includes the Agent based Models (ABM) and classical compartmental models i.e. Susceptible-Infected-Recovered (SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) approaches. Our tool allows simulation of scenarios by changing strength of lockdown, basic reproduction number(R0), asymptomatic spread, testing rate, contact rate (Beta), recovery rate (Gamma), incubation period and starting number of cases. We optimized ABMs and classical compartmental models to fit the actual data, both of which performed well in terms of R-squared, root mean squared error (RMSE) and mean absolute percentage error (MAPE). Out of the three models in our suite, ABM was able to capture the data better than SIR and SEIR and achieved an RSQ of 92.3% for India and 89% for Maharashtra for the next 30 days. We also computed R0 using SIR and SEIR models which were found to be decreasing over the different periods of lockdown indicating the effectiveness of policies and interventions. Finally, we formulated ICU bed requirements using our best models. Our evaluation suggests that ABM models were able to capture the dynamic nature of the epidemic for a longer duration of time while classical SIR and SEIR models performed inefficiently for longer terms. The visual interactivity and ability to simulate outcomes under different parameters will allow the policymakers to make informed decisions for estimating the strength of lockdown to be implemented and testing rates. Further, our models were able to highlight the differences at state level for the parameters such as R0 and contact rates and hence can be applied for state specific decision making. An interactive dashboard http://covision.tavlab.iiitd.edu.in have been hosted as a web-server for the war level monitoring of the covid19 pandemic in India in public domain
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was partially supported by the Wellcome Trust/DBT India Alliance Fellowship IA/CPHE/14/1/501504 awarded to Tavpritesh Sethi and the Center for Artificial Intelligence at IIIT-Delhi. We also thank CSIR India for supporting Aditya Nagori and UGC India for supporting Raghav Awasthi. We acknowledge Rakesh Lodha from All India Institute of Medical Sciences, New Delhi, for his valuable inputs and Bhavika Rana for her design input for the dashboard frontend.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This research did not involve human participants. Publicly available statistics were used to train the models.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data were used in the manuscript are publicly available from the Ministry of Health and Family Welfare, Government of India website.