Abstract
Quantifying the impact of natural disasters or epidemics is critical for guiding policy decisions and interventions. When the effects of an event are long-lasting and difficult to detect in the short term, the accumulated effects can be devastating. Mortality is one of the most reliably measured health outcomes, partly due to its unambiguous definition. As a result, excess mortality estimates are an increasingly effective approach for quantifying the effect of an event. However, the fact that indirect effects are often characterized by small, but enduring, increases in mortality rates present a statistical challenge. This is compounded by sources of variability introduced by demographic changes, secular trends, seasonal and day of the week effects, and natural variation. Here we present a model that accounts for these sources of variability and characterizes concerning increases in mortality rates with smooth functions of time that provide statistical power. The model permits discontinuities in the smooth functions to model sudden increases due to direct effects. We implement a flexible estimation approach that permits both surveillance of concerning increases in mortality rates and careful characterization of the effect of a past event. We demonstrate our tools’ utility by estimating excess mortality after hurricanes in the United States and Puerto Rico. We use Hurricane Maria as a case study to show appealing properties that are unique to our method compared to current approaches. Finally, we show the flexibility of our approach by detecting and quantifying the 2014 Chikungunya outbreak in Puerto Rico and the COVID-19 pandemic in the United States. We make our tools available through the excessmort R package available from https://cran.r-project.org/web/packages/excessmort/.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Research reported in this publication was supported by the National Institutes of Health under award numbers T32ES007142 and R35GM131802
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Harvard Medical Campus Institutional Review Board
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
We make our tools available through free and open source excessmort R package. All details of our analysis are available by examining the code which is made available on GitHub: https://github.com/RJNunez/excess-mortality-paper The code for the R package implementing the methods is available on CRAN and on GitHub: https://github.com/rafalab/excessmort.