Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict rapid progression of diabetic kidney disease
View ORCID ProfileLili Chan, View ORCID ProfileGirish N. Nadkarni, Fergus Fleming, James R. McCullough, Patti Connolly, Gohar Mosoyan, Fadi El Salem, Michael W. Kattan, Joseph A. Vassalotti, Barbara Murphy, Michael J. Donovan, Steven G. Coca, Scott Damrauer
doi: https://doi.org/10.1101/2020.06.01.20119552
Lili Chan
1Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
Girish N. Nadkarni
1Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
Fergus Fleming
2Renalytix AI Plc, Cardiff, United Kingdom, Renalytix AI, Inc., New York, NY
James R. McCullough
2Renalytix AI Plc, Cardiff, United Kingdom, Renalytix AI, Inc., New York, NY
Patti Connolly
2Renalytix AI Plc, Cardiff, United Kingdom, Renalytix AI, Inc., New York, NY
Gohar Mosoyan
1Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
Fadi El Salem
3Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
Michael W. Kattan
4Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland, OH
Joseph A. Vassalotti
1Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
Barbara Murphy
1Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
Michael J. Donovan
3Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
Steven G. Coca
1Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
Scott Damrauer
5Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
![Loading Loading](https://www.medrxiv.org/sites/all/modules/contrib/panels_ajax_tab/images/loading.gif)
Data Availability
Data is available on request and subject to institutional approvals due to patient health information.
Posted June 11, 2020.
Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict rapid progression of diabetic kidney disease
Lili Chan, Girish N. Nadkarni, Fergus Fleming, James R. McCullough, Patti Connolly, Gohar Mosoyan, Fadi El Salem, Michael W. Kattan, Joseph A. Vassalotti, Barbara Murphy, Michael J. Donovan, Steven G. Coca, Scott Damrauer
medRxiv 2020.06.01.20119552; doi: https://doi.org/10.1101/2020.06.01.20119552
Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict rapid progression of diabetic kidney disease
Lili Chan, Girish N. Nadkarni, Fergus Fleming, James R. McCullough, Patti Connolly, Gohar Mosoyan, Fadi El Salem, Michael W. Kattan, Joseph A. Vassalotti, Barbara Murphy, Michael J. Donovan, Steven G. Coca, Scott Damrauer
medRxiv 2020.06.01.20119552; doi: https://doi.org/10.1101/2020.06.01.20119552
Subject Area
Subject Areas
- Addiction Medicine (408)
- Allergy and Immunology (719)
- Anesthesia (214)
- Cardiovascular Medicine (3035)
- Dermatology (258)
- Emergency Medicine (456)
- Epidemiology (12959)
- Forensic Medicine (12)
- Gastroenterology (848)
- Genetic and Genomic Medicine (4770)
- Geriatric Medicine (440)
- Health Economics (747)
- Health Informatics (3026)
- Health Policy (1095)
- Hematology (405)
- HIV/AIDS (951)
- Medical Education (450)
- Medical Ethics (119)
- Nephrology (490)
- Neurology (4544)
- Nursing (242)
- Nutrition (671)
- Oncology (2361)
- Ophthalmology (666)
- Orthopedics (264)
- Otolaryngology (332)
- Pain Medicine (296)
- Palliative Medicine (85)
- Pathology (512)
- Pediatrics (1229)
- Primary Care Research (515)
- Public and Global Health (7132)
- Radiology and Imaging (1586)
- Respiratory Medicine (940)
- Rheumatology (456)
- Sports Medicine (396)
- Surgery (503)
- Toxicology (63)
- Transplantation (218)
- Urology (187)