Abstract
Background Social distancing has led to a “flattening of the curve” in many states across the U.S. This is part of a novel, massive, global social experiment which has served to mitigate the pandemic in the absence of a vaccine or effective anti-viral drugs. Hence it is important to be able to forecast hospitalizations reasonably accurately.
Methods We propose on phenomenological grounds a generalized diffusion equation which incorporates the effect of social distancing to forecast the temporal evolution of the probability of having a given number of hospitalizations. The probability density function is log-normal in the number of hospitalizations, which is useful in describing pandemics where the number of hospitalizations is very high.
Findings We used this insight and data to make forecasts for states using Monte Carlo methods. Back testing validates our approach, which yields good results about a week into the future. States are beginning to reopen at the time of publication and our forecasts indicate possible precursors of increased hospitalizations.
Additionally we studied the reproducibility Ro in New York (Italian strain) and California (Wuhan strain). We find that even if there is a difference in the transmission of the two strains, social distancing has been able to control the progression of COVID 19.
Funding None.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
None
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Publicly available data on COVID-19 hospitalizations was used from the Covid Tracking Project