Abstract
The goal of the lockdown is to mitigate and if possible prevent the spread of an epidemic. It consists in reducing social interactions. This is taken into account by the introduction of a factor of reduction of social interactions q, and by decreasing the transmission coefficient of the disease accordingly. Evaluating q is a difficult question and one can ask if it makes sense to compute an average coefficient q for a given population, in order to make predictions on the basic reproduction rate ℛ0, the dynamics of the epidemic or the fraction of the population that will have been infected by the end of the epidemic. On a very simple example, we show that the computation of ℛ0 in a heterogeneous population is not reduced to the computation of an average q but rather to the direct computation of an average coefficient ℛ0. Even more interesting is the fact that, in a range of data compatible with the Covid-19 outbreak, the size of the epidemic is deeply modified by social heterogeneity, as is the height of the epidemic peak, while the date at which it is reached mainly depends on the average ℛ0 coefficient. This paper illustrates more technical results that can be found in [4], with new numerical computations. It is intended to draw the attention on the role of heterogeneities in a population in a very simple case, which might be difficult to apprehend in more realistic but also more complex models.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work has been partially supported by the Project EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR). The authors thank the CNRS-MODCOV19 platform for support.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Theoretical work only, no approval required.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.