Abstract
The SARS-COV-2 pandemic has put pressure on Intensive Care Units, so that identifying predictors of disease severity is a priority. We collected 58 clinical and biological variables, chest CT scan data (506,341 images), and radiology reports from 1,003 coronavirus-infected patients from two French hospitals. We trained a deep learning model based on CT scans to predict severity; this model was more discriminative than a radiologist quantification of disease extent. We showed that neural network analysis of CT-scan brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP). To provide a multimodal severity score, we developed AI-severity that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) as well as the CT deep learning model. When comparing AI-severity with 11 existing scores for severity, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach.
Competing Interest Statement
The authors declare the following competing interests: Employment: Michael Blum, Paul Herent, Rémy Dubois, Nicolas Loiseau, Paul Trichelair, Etienne Bendjebbar, Simon Jégou, Meriem Sefta, Paul Jehanno, Fabien Brulport, Olivier Dehaene, Jean-Baptiste Schiratti, Kathryn Schutte, Elodie Pronier, Jocelyn Dachary, Adrian Gonzalez, employed by Owkin Co-founders of Owkin Inc : Thomas Clozel, Gilles Wainrib.
Funding Statement
Owkin employees are paid by Owkin, Inc.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study has received approval of ethic committees from the two hospitals and authors submitted a declaration to the National Commission of Data Processing and Liberties (Number INDS MR5413020420, CNIL) in order to get registered in the medical studies database and respect the General Regulation on Data Protection (RGPD) requirements.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Ai-severity is now the only score we developed to be put forward. Comprehensive comparison with 11 scores that predict severity/mortality.
Data Availability
The dataset of patients hospitalized at Kremlin-Bicetre (KB) and Institut Gustave Roussy (IGR) are stored on a server at Institut Gustave Roussy (IGR). The data are available from the first author upon request subject to ethical review.