Abstract
We estimated time-varying reproduction numbers of COVID-19 transmission in counties and regions of California and in states of the United States, using the Wallinga-Teunis method of estimations applied to publicly available data. The serial interval distribution assumed incorporates wide uncertainty in delays from symptom onset to case reporting. This assumption contributes smoothing and a small but meaningful increase in numerical estimates of reproduction numbers due to the likely existence of secondary cases not yet reported. Transmission in many areas of the U.S. may not yet be controlled, including some areas in which case counts appear to be stable or slowly declining.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
LW and TCP are funded by NIH/NIGMS grant R01 GM130900-01A1 to the University of California, San Francisco.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data used in this manuscript is publicly available from the New York Times and other sources, all linked in the manuscript.