ABSTRACT
BACKGROUND Whole-genome sequencing of pathogens can improve resolution of outbreak clusters and define possible transmission networks. We applied high-throughput genome sequencing of SARS-CoV-2 to 75% of cases in the State of Victoria (population 6.24 million) in Australia.
METHODS Cases of SARS-CoV-2 infection were detected through active case finding and contact tracing. A dedicated SARS-CoV-2 multidisciplinary genomic response team was formed to enable rapid integration of epidemiological and genomic data. Phylodynamic analysis was performed to assess the putative impact of social restrictions.
RESULTS Between 25 January and 14 April 2020, 1,333 COVID-19 cases were reported in Victoria, with a peak in late March. After applying internal quality control parameters, 903 samples were included in genomic analyses. Sequenced samples from Australia were representative of the global diversity of SARS-CoV-2, consistent with epidemiological findings of multiple importations and limited onward transmission. In total, 76 distinct genomic clusters were identified; these included large clusters associated with social venues, healthcare facilities and cruise ships. Sequencing of sequential samples from 98 patients revealed minimal intra-patient SARS-CoV-2 genomic diversity. Phylodynamic modelling indicated a significant reduction in the effective viral reproductive number (Re) from 1.63 to 0.48 after the implementation of travel restrictions and population-level physical distancing.
CONCLUSIONS Our data provide a comprehensive framework for the use of SARS-CoV-2 genomics in public health responses. The application of genomics to rapidly identify SARS-CoV-2 transmission chains will become critically important as social restrictions ease globally. Public health responses to emergent cases must be swift, highly focused and effective.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The Victorian Infectious Diseases Reference Laboratory (VIDRL) and the Microbiological Diagnostic Unit Public Health Laboratory (MDU PHL) at The Doherty Institute are funded by the Victorian Government. This work was supported by the National Health and Medical Research Council, Australia (NHMRC); Partnership Grant (APP1149991), Practitioner Fellowship to BPH (APP1105905), Investigator Grant to DAW (APP1174555), Research Fellowship to TPS (APP1105525).
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Joint senior author
Data Availability
Consensus sequences and Illumina sequencing reads were deposited into GenBank under BioProject PRJNA613958 (Supplementary Data). Consensus genome sequences are also available from https://github.com/MDU-PHL/COVID19-paper.