ABSTRACT
High-resolution computed tomography radiology is a critical tool in the diagnosis and management of COVID-19 infection; however, in smaller clinics around the world, there is a shortage of radiologists available to analyze these images. In this paper, we compare the performance of 16 available deep learning algorithms to help identify COVID19. We utilize an already existing diagnostic technology (X-ray) and an already existing neural network (ResNet-50) to diagnose COVID-19. Our approach eliminates the extra time and resources needed to develop new technology and associated algorithm, thus aiding the front-line in the race against the COVID-19 pandemic. Results show that ResNet-50 is the optimal pretrained neural network for the detection of COVID-19, using three different cross-validation ratios, based on training time, accuracy, and network size. We also present a custom visualization of the results that can be used to highlight important visual biomarkers of the disease and disease progression.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was supported by the NSERC grant RGPIN-2014-04462 and Canada Research Chairs (CRC) program.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.