COVID-19 diagnosis prediction by symptoms of tested individuals: a machine learning approach
View ORCID ProfileYazeed Zoabi, View ORCID ProfileNoam Shomron
doi: https://doi.org/10.1101/2020.05.07.20093948
Yazeed Zoabi
1Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
Noam Shomron
1Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
Data Availability
All data used in this study was retrieved from the Israeli Ministry of Health website.
Posted May 14, 2020.
COVID-19 diagnosis prediction by symptoms of tested individuals: a machine learning approach
Yazeed Zoabi, Noam Shomron
medRxiv 2020.05.07.20093948; doi: https://doi.org/10.1101/2020.05.07.20093948
Subject Area
Subject Areas
- Addiction Medicine (380)
- Allergy and Immunology (697)
- Anesthesia (187)
- Cardiovascular Medicine (2824)
- Dermatology (242)
- Emergency Medicine (427)
- Epidemiology (12521)
- Forensic Medicine (10)
- Gastroenterology (799)
- Genetic and Genomic Medicine (4400)
- Geriatric Medicine (399)
- Health Economics (712)
- Health Informatics (2835)
- Health Policy (1044)
- Hematology (372)
- HIV/AIDS (893)
- Medical Education (412)
- Medical Ethics (114)
- Nephrology (460)
- Neurology (4159)
- Nursing (220)
- Nutrition (615)
- Oncology (2188)
- Ophthalmology (623)
- Orthopedics (254)
- Otolaryngology (316)
- Pain Medicine (263)
- Palliative Medicine (81)
- Pathology (484)
- Pediatrics (1169)
- Primary Care Research (481)
- Public and Global Health (6739)
- Radiology and Imaging (1481)
- Respiratory Medicine (896)
- Rheumatology (429)
- Sports Medicine (361)
- Surgery (470)
- Toxicology (57)
- Transplantation (198)
- Urology (173)