Abstract
Asymptomatic infections and limited testing capacity have led to under-reporting of SARS-CoV-2 cases. This has hampered the ability to ascertain true infection numbers, evaluate the effectiveness of surveillance strategies, determine transmission dynamics, and estimate reproductive numbers. Leveraging both viral genomic and time series case data offers methods to estimate these parameters.
Using a Bayesian inference framework to fit a branching process model to viral phylogeny and time series case data, we estimated time-varying reproductive numbers and their variance, the total numbers of infected individuals, the probability of case detection over time, and the estimated time to detection of an outbreak for 12 locations in Europe, China, and the United States.
The median percentage of undetected infections ranged from 13% in New York to 92% in Shanghai, China, with the length of local transmission prior to two cases being detected ranging from 11 days (95% CI: 4-21) in California to 37 days (9-100) in Minnesota. The probability of detection was as low as 1% at the start of local epidemics, increasing as the number of reported cases increased exponentially. The precision of estimates increased with the number of full-length viral genomes in a location. The viral phylogeny was informative of the variance in the reproductive number with the 32% most infectious individuals contributing 80% of total transmission events.
This is the first study that incorporates both the viral genomes and time series case data in the estimation of undetected COVID-19 infections. Our findings suggest the presence of undetected infections broadly and that superspreading events are contributing less to observed dynamics than during the SARS epidemic in 2003. This genomics-informed modeling approach could estimate in near real-time critical surveillance metrics to inform ongoing COVID-19 response efforts.
Funding AWS provided computational credit via the Diagnostic Development Initiative.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
AWS provided computational credit via the Diagnostic Development Initiative.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data are provided as supplementary files.