Abstract
A novel coronavirus, designated as COVID-19, emerged in Wuhan, China, at the end of 2019. In this paper, a mathematical model is proposed to analyze the dynamic behavior of COVID-19. Based on inter-city networked coupling effects, a fractional-order SEIHDR system with the real-data from 23 January to 18 March, 2020 of COVID-19 is discussed. Meanwhile, hospitalized individuals and the mortality rates of three types of individuals (exposed, infected and hospitalized) are firstly taken into account in the proposed model. And infectivity of individuals during incubation is also considered in this paper. By applying least squares method and predictor-correctors scheme, the numerical solutions of the proposed system in the absence of the inter-city network and with the inter-city network are stimulated by using the real-data from 23 January to 18 − m March, 2020 where m is equal to the number of prediction days. Compared with integer-order system (α = 0), the fractional-order model without network is validated to have a better fitting of the data on Beijing, Shanghai, Wuhan, Huanggang and other cities. In contrast to the case without network, the results indicate that the inter-city network system may be not a significant case to virus spreading for China because of the lock down and quarantine measures, however, it may have an impact on cities that have not adopted city closure. Meanwhile, the proposed model better fits the data from 24 February to 31, March in Italy, and the peak number of confirmed people is also predicted by this fraction-order model. Furthermore, the existence and uniqueness of a bounded solution under the initial condition are considered in the proposed system. Afterwards, the basic reproduction number R0 is analyzed and it is found to hold a threshold: the disease-free equilibrium point is locally asymptotically stable when R0 ≤ 1, which provides a theoretical basis for whether COVID-19 will become a pandemic in the future.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work is supported by the Natural Science Foundation of Beijing Municipality (No. Z180005) and the National Nature Science Founda-tion of China (No. 61772063).
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
This work is supported by the Natural Science Foundation of Beijing Municipality (No. Z180005) and the National Nature Science Foundation of China (No. 61772063).
Data Availability
public domain quoted in the ppaer