Abstract
Global spread of coronavirus disease 2019 (COVID-19) has created an unprecedented infectious disease crisis worldwide. Despite uncertainties about COVID-19, model-based forecasting of competing mitigation measures on its course is urgently needed to inform mitigation policy. We used a stochastic agent-based microsimulation model of the COVID-19 epidemic in New York City and evaluated the potential impact of quarantine duration (from 4 to 16 weeks), quarantine lifting type (1-step lifting for all individuals versus a 2-step lifting according to age), post-quarantine screening, and use of a hypothetical effective treatment against COVID-19 on the disease’s cumulative incidence and mortality, and on ICU-bed occupancy. The source code of the model has been deposited in a public source code repository (GitHub®). The model calibrated well and variation of model parameter values had little impact on outcome estimates. While quarantine is efficient to contain the viral spread, it is unlikely to prevent a rebound of the epidemic once lifted. We projected that lifting quarantine in a single step for the full population would be unlikely to substantially lower the cumulative mortality, regardless of quarantine duration. By contrast, a two-step quarantine lifting according to age was associated with a substantially lower cumulative mortality and incidence, up to 71% and 23%, respectively, as well as lower ICU-bed occupancy. Although post-quarantine screening was associated with diminished epidemic rebound, this strategy may not prevent ICUs from being overcrowded. It may even become deleterious after a 2-step quarantine lifting according to age if the herd immunity effect does not had sufficient time to become established in the younger population when the quarantine is lifted for the older population. An effective treatment against COVID-19 would considerably reduce the consequences of the epidemic, even more so if ICU capacity is not exceeded.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work did not receive any external funding.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Conflicts of interest The authors declare no competing interests.
Disclaimer The views and opinions expressed in this report are those of the authors and should not be construed to represent the views of any of the sponsoring organizations, agencies, or the US government.
Authorship HL designed the model and performed the analysis. NH wrote the first draft of the manuscript and critically revised the model. MB critically revised the model and manuscript for scientific content; CB, MO, MM and FL critically revised the manuscript for scientific content. All authors have contributed to and have approved the current version of the manuscript.
Funding source This work did not receive any external funding.
Data Availability
The source code of the model has been deposited in a public source code repository (GitHub).