Predicting the Epidemic Curve of the Coronavirus (SARS-CoV-2) Disease (COVID-19) Using Artificial Intelligence
View ORCID ProfileLászló Róbert Kolozsvári, Tamás Bérczes, András Hajdu, Rudolf Gesztelyi, Attila Tiba, Imre Varga, View ORCID ProfileAla’a B. Al-Tammemi, Gergő József Szőllősi, Szilvia Harsányi, Szabolcs Garbóczy, Judit Zsuga
doi: https://doi.org/10.1101/2020.04.17.20069666
László Róbert Kolozsvári
1Department of Family and Occupational Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
Tamás Bérczes
2Faculty of Informatics, University of Debrecen, Debrecen, Hungary
András Hajdu
2Faculty of Informatics, University of Debrecen, Debrecen, Hungary
Rudolf Gesztelyi
3Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
Attila Tiba
2Faculty of Informatics, University of Debrecen, Debrecen, Hungary
Imre Varga
2Faculty of Informatics, University of Debrecen, Debrecen, Hungary
Ala’a B. Al-Tammemi
1Department of Family and Occupational Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
4Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
Gergő József Szőllősi
1Department of Family and Occupational Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
Szilvia Harsányi
4Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
5Department of Health Systems Management and Quality Management in Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
Szabolcs Garbóczy
4Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
6Department of Psychiatry, University of Debrecen, Debrecen, Hungary
Judit Zsuga
5Department of Health Systems Management and Quality Management in Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
Data Availability
All data sources are publicly available and described in the methods section.
Posted January 27, 2021.
Predicting the Epidemic Curve of the Coronavirus (SARS-CoV-2) Disease (COVID-19) Using Artificial Intelligence
László Róbert Kolozsvári, Tamás Bérczes, András Hajdu, Rudolf Gesztelyi, Attila Tiba, Imre Varga, Ala’a B. Al-Tammemi, Gergő József Szőllősi, Szilvia Harsányi, Szabolcs Garbóczy, Judit Zsuga
medRxiv 2020.04.17.20069666; doi: https://doi.org/10.1101/2020.04.17.20069666
Predicting the Epidemic Curve of the Coronavirus (SARS-CoV-2) Disease (COVID-19) Using Artificial Intelligence
László Róbert Kolozsvári, Tamás Bérczes, András Hajdu, Rudolf Gesztelyi, Attila Tiba, Imre Varga, Ala’a B. Al-Tammemi, Gergő József Szőllősi, Szilvia Harsányi, Szabolcs Garbóczy, Judit Zsuga
medRxiv 2020.04.17.20069666; doi: https://doi.org/10.1101/2020.04.17.20069666
Subject Area
Subject Areas
- Addiction Medicine (386)
- Allergy and Immunology (701)
- Anesthesia (193)
- Cardiovascular Medicine (2859)
- Dermatology (244)
- Emergency Medicine (431)
- Epidemiology (12569)
- Forensic Medicine (10)
- Gastroenterology (807)
- Genetic and Genomic Medicine (4447)
- Geriatric Medicine (402)
- Health Economics (716)
- Health Informatics (2856)
- Health Policy (1050)
- Hematology (376)
- HIV/AIDS (893)
- Medical Education (415)
- Medical Ethics (114)
- Nephrology (464)
- Neurology (4201)
- Nursing (223)
- Nutrition (617)
- Oncology (2205)
- Ophthalmology (626)
- Orthopedics (254)
- Otolaryngology (319)
- Pain Medicine (269)
- Palliative Medicine (83)
- Pathology (488)
- Pediatrics (1172)
- Primary Care Research (483)
- Public and Global Health (6787)
- Radiology and Imaging (1494)
- Respiratory Medicine (902)
- Rheumatology (430)
- Sports Medicine (369)
- Surgery (473)
- Toxicology (57)
- Transplantation (202)
- Urology (174)