What influences COVID-19 infection rates: A statistical approach to identify promising factors applied to infection data from Germany
Moritz Mercker, Uwe Betzin, Dennis Wilken
doi: https://doi.org/10.1101/2020.04.14.20064501
Moritz Mercker
1Bionum, Consultants in biological and biomedical statistics, Hamburg, Germany
2Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
Uwe Betzin
3User Experience Consultant, Schriesheim, Germany
Dennis Wilken
4Institute of Geosciences, Kiel University, Kiel, Germany
Article usage
Posted April 17, 2020.
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (718)
- Anesthesia (210)
- Cardiovascular Medicine (3002)
- Dermatology (256)
- Emergency Medicine (449)
- Epidemiology (12900)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4698)
- Geriatric Medicine (432)
- Health Economics (742)
- Health Informatics (2986)
- Health Policy (1081)
- Hematology (399)
- HIV/AIDS (942)
- Medical Education (439)
- Medical Ethics (116)
- Nephrology (481)
- Neurology (4486)
- Nursing (239)
- Nutrition (657)
- Oncology (2329)
- Ophthalmology (659)
- Orthopedics (262)
- Otolaryngology (330)
- Pain Medicine (290)
- Palliative Medicine (85)
- Pathology (506)
- Pediatrics (1218)
- Primary Care Research (509)
- Public and Global Health (7073)
- Radiology and Imaging (1570)
- Respiratory Medicine (933)
- Rheumatology (454)
- Sports Medicine (390)
- Surgery (497)
- Toxicology (62)
- Transplantation (214)
- Urology (187)