Summary
To reliably estimate the demand on regional health systems and perform public health planning, it is necessary to have a good estimate of the prevalence of infection with SARS-CoV-2 (the virus that causes COVID-19) in the population. In the absence of wide-spread testing, we provide one approach to infer prevalence based on the assumption that the fraction of true infections needing hospitalization is fixed and that all hospitalized cases of COVID-19 in Santa Clara are identified.
Our goal is to estimate the prevalence of SARS-CoV-2 infections, i.e. the true number of people currently infected with the virus, divided by the total population size.
Our analysis suggests that as of March 17, 2020, there are 6,500 infections (0.34% of the population) of SARS-CoV-2 in Santa Clara County. Based on adjusting the parameters of our model to be optimistic (respectively pessimistic), the number of infections would be 1,400 (resp. 26,000), corresponding to a prevalence of 0.08% (resp. 1.36%). If the shelter-in-place led to R0 < 1, we would expect the number of infections to remain about constant for the next few weeks. However, even if this were true, we expect to continue to see an increase in hospitalized cases of COVID-19 in the short term due to the fact that infection of SARS-CoV-2 on March 17th can lead to hospitalizations up to 14 days later.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
SY acknowledges support from NIH grant R01HL144555-01. NHS acknowledges salary support from the Stanford Medicine Program for AI in Healthcare. JS acknowledges support from the Open Philanthropy Project.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
syadlows{at}stanford.edu, nigam{at}stanford.edu, jsteinhardt{at}berkeley.edu
Data Availability
All publicly available data included in results.