Abstract
Here we apply the concept of transfer learning to time series forecasting models for mosquito-borne diseases. Transfer learning, in this application, allows us to use knowledge obtained from modeling one disease to predict an emerging one for which extensive data is still not available. Here we discuss the performances of two families of models for predicting Chikungunya and Zika using models trained with dengue time series, in two Brazilian cities: Rio de Janeiro and Fortaleza.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No Funding was received for the realization of this work.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data is available through the Infodengue API