Abstract
Effective management of seasonal diseases such as dengue fever depends on timely deployment of control measures prior to the high transmission season. As the epidemic season fluctuates from year to year, the availability of accurate forecasts of incidence can be decisive in attaining control of such diseases. Obtaining such forecasts from classical time series models has proven a difficult task. Here we propose and compare machine learning models incorporating feature selection,such as LASSO and Random Forest regression with LSTM a deep recurrent neural network, to forecast weekly dengue incidence in 790 cities in Brazil. We use multivariate time-series as predictors and also utilize time series from similar cities to capture the spatial component of disease transmission. Among the compared models, the LSTM recurrent neural network model displayed the smallest predictive errors in predicting incidence of dengue out of sample, in cities of different sizes.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Funding for this work was provided by CAPES in the form of a scholarship to Elisa Mussumeci.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data used in this paper is available through the Infodengue Project API in the link given below.