Abstract
Readmission in the intensive care unit (ICU) is associated with poor clinical outcomes and high costs. Traditional scoring methods to help clinicians deciding whether a patient is ready for discharge have failed to meet expectations, paving the way for machine learning based approaches. Freely available datasets such as MIMIC-III have served as benchmarking media to compare such tools. We used the OMOP-CDM version of MIMIC-III (MIMIC-OMOP) to train and evaluate a lightweight tree boosting method to predict readmission in ICU at different time points after discharge (3, 7 and 30 days), outperforming existing solutions with an AUROC of 0.805 for 3-days readmission.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Methodology and corresponding figures have been revised; authors list updated; Supplemental files revised.
Data Availability
All data used and code are freely accessible.